Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Chem Soc Rev ; 53(11): 5366-5393, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712843

RESUMO

Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.

2.
J Am Chem Soc ; 146(7): 4851-4863, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346857

RESUMO

The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.


Assuntos
Amiloide , Água , Fluorescência
3.
J Am Chem Soc ; 146(27): 18350-18359, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38937461

RESUMO

The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.

4.
Small ; : e2401334, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804884

RESUMO

Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.

5.
Nano Lett ; 23(16): 7683-7690, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561078

RESUMO

Although renal-clearable luminescent metal nanoparticles (NPs) have been widely developed, their application to efficient cancer therapy is still limited due to low reactive oxygen species (ROS) production. Here, a novel system of clearable mercaptosuccinic acid (MSA) coated Au-Ag bimetallic NPs is designed to enhance ROS production. The results show that the strong COO-Ag coordination bonds between the carboxylic acid groups of MSA and Ag atoms on the Au-Ag bimetallic NPs could construct high-rigidity interlocked surface motifs to restrict the intrananoparticle motions for enhanced ROS generation. Moreover, bimetallic NPs exhibit pH-responsive self-assembly capability under the acidic environment inside lysosomes of cancer cells at both in vitro and in vivo, restricting the internanoparticle motions to further boost ROS production. The well-designed bimetallic NPs show high tumor targeting efficiency, fast elimination from the body through rapid liver biotransformation, and extensive destruction to cancer cells, resulting in good security and prominent therapeutic performance.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Ouro/química
6.
Angew Chem Int Ed Engl ; 63(29): e202405030, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695837

RESUMO

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.


Assuntos
Antibacterianos , Química Click , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Polimerização , Compostos de Piridínio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/síntese química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química
7.
Angew Chem Int Ed Engl ; : e202407307, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868977

RESUMO

Small organic photothermal reagents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ε), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTAs namely OTTBF shows high MEC (7.21× 104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.

8.
Angew Chem Int Ed Engl ; 63(28): e202401261, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687258

RESUMO

Aggregation is a conventional method to enhance the quantum yields (QYs) of pure organic luminophores due to the restriction of intramolecular motions (RIM). However, how to realize RIM in metal-organic frameworks (MOFs) is still unclear and challenging. In this work, the ligand meta-anchoring strategy is first proposed and proved to be an effective and systematic approach to restrict the intramolecular motions of MOFs for the QY improvement. By simply shifting the substituent position in the ligand from para to meta, the QY of the resulting MOF is significantly enhanced by eleven-fold. The value is even higher than that of ligand aggregates, demonstrating the strong RIM effect of this ligand meta-anchoring strategy. The introduction of co-ligand induces the appearance of visible yellow room temperature phosphorescence with a lifetime of 222 ms due to the QY enhancement and the charge transfer between the donor and accepter units. The present work thus broadens the understanding of the RIM mechanism from a new perspective, develops a novel method to realize RIM and expands the applicable objects from pure organic materials to organic-inorganic hybrid materials.

9.
Angew Chem Int Ed Engl ; : e202408586, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853460

RESUMO

Understanding the properties of the precursor can provide deeper insight into the crystallization and nucleation mechanisms of perovskites, which is vital for the solution-process device performance. Herein, we conducted a detailed investigation into the photophysics properties of CsPbBr3 precursors in a broad concentration and various solvents. The precursor transformed from the solution state into the colloidal state and exhibited aggregation-induced emission character as the concentration increased. The aggregative luminescence from the precursors originates from the polybromide plumbous that is formed through the coordination of solvent molecules to the lead metal center. Two adducts with monodentate (PbBr2 ⋅ solvent) and bidentate (PbBr2 ⋅ 2solvent) ligands can be obtained, accompanied by emission with photoluminescence at 610 and 565 nm, respectively. Furthermore, the aggregative luminescence intensity and color could be regulated by changing the solvent and precursor ratio. Besides, we discussed the difference between the molecular aggregate in the organic system and the ionic aggregate in the inorganic system: the ionic aggregate is composed of solvated ions rather than individual molecules as in organic systems, which could possess properties that ions do not have. The fluorescence that is sensitive to Pb2+ coordination reported here could be applied to screen perovskite additives and judge the precursor aging.

10.
Angew Chem Int Ed Engl ; : e202409782, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888844

RESUMO

A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newlydesigned acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technologybut also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.

11.
Angew Chem Int Ed Engl ; 63(19): e202402175, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499514

RESUMO

Schiff bases are a crucial component in various functional materials but often exhibit non-emissive behavior which significantly limits their potential applications as luminescent materials. However, traditional approaches to convert them into aggregate emitters often require intricate molecular design, tedious synthesis, and significant time and resource consumption. Herein, we present a cocrystallization-induced emission strategy that can transform non-emissive (hetero)aryl-substituted Schiff bases into green-yellow to yellow aggregate emitters via even simple grinding of a mixture of Schiff bases and 1,2,4,5-tetracyanobenzene (TCB) mixtures. The combined experimental and theoretical analysis revealed that the cocrystallization inhibits the C=N isomerization and promotes face-to-face π-π interaction, which restricts access to both the dark state and canonical intersection to ultimately induce emission. Furthermore, the induced emission enables the observation of solid-state molecular diffusion through fluorescence signals, advancing white light emission diodes, and notably, solution-processed organic light-emitting diodes based on cocrystal for the first time. This study not only highlights the potential of developing new C=N structural motifs for AIEgens but also could boost advancements in related structure motifs like C=C and N=N.

12.
Angew Chem Int Ed Engl ; 63(29): e202404142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38715431

RESUMO

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Imagem Óptica , Eletricidade Estática , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Tiofenos/química , Animais , Camundongos , Estrutura Molecular
13.
J Am Chem Soc ; 145(41): 22776-22787, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812516

RESUMO

The manipulation of electron donor/acceptor (D/A) shows an endless impetus for innovating optical materials. Currently, there is booming development in electron donor design, while research on electron acceptor engineering has received limited attention. Inspired by the philosophical idea of "more is different", two systems with D'-D-A-D-D' (1A system) and D'-D-A-A-D-D' (2A system) structures based on acceptor engineering were designed and studied. It was demonstrated that the 1A system presented a weak aggregation-induced emission (AIE) to aggregation-caused quenching (ACQ) phenomenon, along with the increased acceptor electrophilicity and planarity. In sharp contrast, the 2A system with one more acceptor exhibited an opposite ACQ-to-AIE transformation. Interestingly, the fluorophore with a more electron-deficient A-A moiety in the 2A system displayed superior AIE activity. More importantly, all compounds in the 2A system showed significantly higher molar absorptivity (ε) in comparison to their counterparts in the 1A system. Thanks to the highest ε, near-infrared-II (NIR-II, 1000-1700 nm) emission, desirable AIE property, favorable reactive oxygen species (ROS) generation, and high photothermal conversion efficiency, a representative member of the 2A system handily performed in fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal collaborative therapy for efficient tumor elimination. Meanwhile, the NIR-II fluorescence imaging of blood vessels and lymph nodes in living mice was also accomplished. This study provides the first evidence that the dual-connected acceptor tactic could be a new molecular design direction for the AIE effect, resulting in high ε, aggregation-intensified NIR-II fluorescence emission, and improved ROS and heat generation capacities of phototheranostic agents.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Espécies Reativas de Oxigênio , Imagem Óptica , Corantes Fluorescentes/química , Nanomedicina Teranóstica/métodos , Nanopartículas/química
14.
J Am Chem Soc ; 145(32): 17689-17699, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550880

RESUMO

Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Piroptose , Apoptose , Carbono , Cloreto de Polivinila
15.
J Am Chem Soc ; 145(49): 26645-26656, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051539

RESUMO

Photoactivatable luminescent materials have garnered enormous attention in the field of intelligent responsive materials, yet their design and applications remain challenging due to the limited variety of photoactivatable motifs. In the work described herein, we discovered a new photoactivatable luminescent motif that underwent ring-flipping isomerization under UV irradiation. The emission of this motif exhibited a rapid transformation from dark yellow to bright green, accompanied by a significant enhancement of quantum yield from 1.9% to 34.2%. Experimental and theoretical studies revealed that the effective intramolecular motion (EIM) was crucial to the distinct luminescence performance between two isomers. In addition, polymers containing this motif were achieved through a one-pot alkyne polymerization, exhibiting both photofluorochromic and photo-cross-linking properties. Furthermore, multiple types of photopatterning, including luminescent encryption, fluorescent grayscale imaging, and high-resolution photolithographic patterns, were realized. This work developed a new photoactivatable luminescent motif and demonstrated its potential applications in both small molecules and macromolecules, which will help in the future design of photoactivatable luminescent materials.

16.
Chemistry ; 29(13): e202203554, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453732

RESUMO

Selective detection of Al3+ is of great significance both for the benefit of human health and environmental safety considerations. In this work, a sensitive and selective fluorescence assay for Al3+ was proposed based on the green-emissive Cu nanoclusters (Cu NCs). Different from the commonly reported works, the green emissive Cu NCs showed dual emission bands at 450 and 510 nm, attributed to the reaction product between polyvinyl pyrrolidone and ascorbic acid and the Cu core, respectively. Al3+ could induce the aggregation of Cu NCs by forming covalent bonds, which results in the enhancement of photoluminescence intensity. This enhancement phenomenon is rather selective to Al3+ , which endows the detection in real samples. These results provide new insights for the fluorescence mechanisms of metal NCs, which also provided a functional luminescent material for various applications, such as chemical sensing, bioimaging and photoelectric devices.

17.
Macromol Rapid Commun ; 44(13): e2300104, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37082932

RESUMO

Recent advancements in aggregation-induced emission (AIE) macromolecular materials have brought their attention as potential antibacterial solutions, these materials offer new approaches to cure multidrug-resistant infections and biofilms in bacterial infections as well as real-time monitoring and specific targeting of bacteria. This review provides an overview of the three main categories of AIE macromolecular materials with antibacterial properties; namely AIE-active polymers, AIEgen@polymer complexes, and clusterization-triggered emission (CTE) based polymers. The mechanisms and applications of these materials in antibacterial treatment, wound care, and protective equipment are also discussed. The potential for future developments and application directions of AIE-based antimicrobial materials are finally highlighted.


Assuntos
Antibacterianos , Polímeros , Substâncias Macromoleculares/farmacologia , Polímeros/farmacologia , Antibacterianos/farmacologia , Bactérias
18.
Chem Soc Rev ; 51(21): 8815-8831, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36255029

RESUMO

Self-luminescence, which eliminates the real-time external optical excitation, can effectively avoid background autofluorescence in photoluminescence, endowing with ultrahigh signal-to-noise ratio and sensitivity in bioassay. Furthermore, in situ generated and emitted photons have been applied to develop excitation-free diagnostics and therapeutic agents against deeply seated diseases. "Enhanced" self-luminescence, referring to the aggregation-induced emission (AIE)-integrated self-luminescence systems, is endowed with not only the above merits but also other superiorities including stronger luminous brightness and longer half-life compared with "traditional" self-luminescence platforms. As an emerging and booming hotspot, the "enhanced" self-luminescence facilitated by the win-win cooperation of the aggregation-induced emission and self-luminescent techniques has become a powerful tool for interdisciplinary research. This tutorial review summarizes the advancements of AIE-assisted self-luminescence including chemiluminescence and afterglow imaging, starting from the discussion on the design and working principles, luminescent mechanisms of self-luminescence fuels, versatile integrated approaches and advantages, and a broad range of representative examples in biosensors and oncotherapy. Finally, the current challenges and perspectives are discussed to further actuate the development of "enhanced" self-luminescence agents for biomedical diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Substâncias Luminescentes , Luminescência , Técnicas Biossensoriais/métodos , Medições Luminescentes
19.
Angew Chem Int Ed Engl ; 62(18): e202302543, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36876917

RESUMO

We developed a catalyst-free, atom-economical interfacial amino-yne click polymerization to in situ synthesize new aggregation-induced emission luminogen (AIEgen)-based free-standing porous organic polymer films at room temperature. The crystalline properties of POP films were confirmed by powder X-ray diffraction and high-resolution transmission electron microscopy. The good porosity of these POP films was proved by their N2 uptake experiments. The thickness of POP films can be easily regulated from 16 nm to ≈1 µm by adjusting monomer concentration. More importantly, these AIEgen-based POP films show bright luminescence with high absolute photoluminescent quantum yields up to 37.8 % and good chemical and thermal stability. The AIEgen-based POP film can encapsulate an organic dye (e.g., Nile red) to further form an artificial light-harvesting system with a large red-shift (Δλ=141 nm), highly efficient energy-transfer ability (ΦET =91 %), and high antenna effect (11.3).

20.
Angew Chem Int Ed Engl ; 62(18): e202300353, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867014

RESUMO

Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa