Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NPJ Regen Med ; 7(1): 61, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261464

RESUMO

Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL- MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.

2.
Exp Cell Res ; 316(19): 3109-23, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20804749

RESUMO

Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Dinoprostona/metabolismo , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/imunologia , Células Estromais/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunofenotipagem , Indometacina/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/citologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia
3.
Nat Med ; 25(9): 1396-1401, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501599

RESUMO

Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70-80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804 ; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder.


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Células da Medula Óssea/citologia , Criança , Pré-Escolar , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatologia , Feminino , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Lentivirus/genética , Masculino , Mutação/genética , Espanha/epidemiologia , Reparo Gênico Alvo-Dirigido , Transdução Genética , Adulto Jovem
4.
Stem Cell Res Ther ; 6: 165, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26345192

RESUMO

INTRODUCTION: Studies have proposed that mesenchymal stem cells (MSCs) improve the hematopoietic engraftment in allogeneic or xenogeneic transplants and this is probably due to the MSCs' immunosuppressive properties. Our study aimed to discern, for the first time, whether MSC infusion could facilitate the engraftment of hematopoietic stem cells (HSCs) in autologous transplantations models, where no immune rejection of donor HSCs is expected. METHODS: Recipient mice (CD45.2) mice, conditioned with moderate doses of radiation (5-7 Gy), were transplanted with low numbers of HSCs (CD45.1/CD45.2) either as a sole population or co-infused with increasing numbers of adipose-derived-MSCs (Ad-MSCs). The influence of Ad-MSC infusion on the short-term and long-term engraftment of donor HSCs was investigated. Additionally, homing assays and studies related with the administration route and with the Ad-MSC/HSC interaction were conducted. RESULTS: Our data show that the co-infusion of Ad-MSCs with low numbers of purified HSCs significantly improves the short-term and long-term hematopoietic reconstitution of recipients conditioned with moderate irradiation doses. This effect was Ad-MSC dose-dependent and associated with an increased homing of transplanted HSCs in recipients' bone marrow. In vivo and in vitro experiments also indicate that the Ad-MSC effects observed in this autologous transplant model are not due to paracrine effects but rather are related to Ad-MSC and HSC interactions, allowing us to propose that Ad-MSCs may act as HSC carriers, facilitating the migration and homing of the HSCs to recipient bone marrow niches. CONCLUSION: Our results demonstrate that Ad-MSCs facilitate the engraftment of purified HSCs in an autologous mouse transplantation model, opening new perspectives in the application of Ad-MSCs in autologous transplants, including HSC gene therapy.


Assuntos
Rejeição de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Transplante Autólogo
5.
Expert Opin Biol Ther ; 10(10): 1453-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831449

RESUMO

IMPORTANCE OF THE FIELD: In the last decade, knowledge of mesenchymal stem cells (MSCs) has evolved rapidly; their immunomodulatory properties and paracrine interactions with specific cell types in damaged tissues and promising results in some clinical applications have made these cells an attractive option for the treatment of certain diseases. AREAS COVERED IN THIS REVIEW: We present some relevant methodological issues and biological properties of MSCs, as well as clinical applications of MSC therapies with particular emphasis in the treatment of graft versus host disease (GVHD), complex perianal fistula and refractory metastatic neuroblastoma. Other topical aspects relevant to the application of cellular therapies such as biosafety studies and cellular production of MSCs are also discussed in this review. WHAT THE READER WILL GAIN: The growing optimism regarding MSCs research is based on the promising results obtained in in vitro and in vivo studies. The rapid translational research with MSCs necessitated standardization of methodology and terminology and greater focus on other aspects such as biosafety and cellular production, especially for clinical use of MSCs. TAKE HOME MESSAGE: Much has been learned about the biology and applications of MSCs and much remains to be learned.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Animais , Técnicas de Cultura de Células , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/cirurgia , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/terapia , Fístula Retal/cirurgia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa