Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Cell ; 18(3): 768-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17182842

RESUMO

Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Vacúolos/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Animais , Endocitose , Endossomos/ultraestrutura , Humanos , Lisossomos/ultraestrutura , Melaninas/biossíntese , Melanossomas/ultraestrutura , Glicoproteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/metabolismo , Proteínas Mutantes/metabolismo , Oxirredutases/química , Pigmentação/fisiologia , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Vacúolos/ultraestrutura
2.
Mol Biol Cell ; 17(8): 3598-612, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16760433

RESUMO

Pmel17 is a pigment cell-specific integral membrane protein that participates in the formation of the intralumenal fibrils upon which melanins are deposited in melanosomes. The Pmel17 cytoplasmic domain is truncated by the mouse silver mutation, which is associated with coat hypopigmentation in certain strain backgrounds. Here, we show that the truncation interferes with at least two steps in Pmel17 intracellular transport, resulting in defects in melanosome biogenesis. Human Pmel17 engineered with the truncation found in the mouse silver mutant (hPmel17si) is inefficiently exported from the endoplasmic reticulum (ER). Localization and metabolic pulse-chase analyses with site-directed mutants and chimeric proteins show that this effect is due to the loss of a conserved C-terminal valine that serves as an ER exit signal. hPmel17si that exits the ER accumulates abnormally at the plasma membrane due to the loss of a di-leucine-based endocytic signal. The combined effects of reduced ER export and endocytosis significantly deplete Pmel17 within endocytic compartments and delay proteolytic maturation required for premelanosome-like fibrillogenesis. The ER export delay and cell surface retention are also observed for endogenous Pmel17si in melanocytes from silver mice, within which Pmel17 accumulation in premelanosomes is dramatically reduced. Mature melanosomes in these cells are larger, rounder, more highly pigmented, and less striated than in control melanocytes. These data reveal a dual sorting defect in a natural mutant of Pmel17 and support a requirement of endocytic trafficking in Pmel17 fibril formation.


Assuntos
Endocitose , Retículo Endoplasmático/metabolismo , Melanossomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação/genética , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células HeLa , Humanos , Melanossomas/ultraestrutura , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Transporte Proteico , Antígeno gp100 de Melanoma
3.
Biochem J ; 391(Pt 2): 249-59, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15960609

RESUMO

Dopachrome tautomerase (Dct) is a type I membrane protein and an important regulatory enzyme that plays a pivotal role in the biosynthesis of melanin and in the rapid metabolism of its toxic intermediates. Dct-mutant melanocytes carrying the slaty or slaty light mutations were derived from the skin of newborn congenic C57BL/6J non-agouti black mice and were used to study the effect(s) of these mutations on the intracellular trafficking of Dct and on the pigmentation of the cells. Dct activity is 3-fold lower in slaty cells compared with non-agouti black melanocytes, whereas slaty light melanocytes have a surprisingly 28-fold lower Dct activity. Homology modelling of the active site of Dct suggests that the slaty mutation [R194Q (Arg194-->Gln)] is located in the active site and may alter the ability of the enzyme to transform the substrate. Transmembrane prediction methods indicate that the slaty light mutation [G486R (Gly486-->Arg)] may result in the sliding of the transmembrane domain towards the N-terminus, thus interfering with Dct function. Chemical analysis showed that both Dct mutations increase pheomelanin and reduce eumelanin produced by melanocytes in culture. Thus the enzymatic activity of Dct may play a role in determining whether the eumelanin or pheomelanin pathway is preferred for pigment biosynthesis.


Assuntos
Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Melaninas/biossíntese , Melanócitos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Melanócitos/citologia , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos
4.
Genetics ; 163(1): 267-76, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12586714

RESUMO

Mutations at the mouse microphthalmia locus (Mitf) affect the development of different cell types, including melanocytes, retinal pigment epithelial cells of the eye, and osteoclasts. The MITF protein is a member of the MYC supergene family of basic-helix-loop-helix-leucine-zipper (bHLHZip) transcription factors and is known to regulate the expression of cell-specific target genes by binding DNA as homodimer or as heterodimer with related proteins. The many mutations isolated at the locus have different effects on the phenotype and can be arranged in an allelic series in which the phenotypes range from near normal to white microphthalmic animals with osteopetrosis. Previous investigations have shown that certain combinations of Mitf alleles complement each other, resulting in a phenotype more normal than that of each homozygote alone. Here we analyze this interallelic complementation in detail and show that it is limited to one particular allele, Mitf(Mi-white) (Mitf(Mi-wh)), a mutation affecting the DNA-binding domain. Both loss- and gain-of-function mutations are complemented, as are other Mitf mutations affecting the DNA-binding domain. Furthermore, this behavior is not restricted to particular cell types: Both eye development and coat color phenotypes are complemented. Our analysis suggests that Mitf(Mi-wh)-associated interallelic complementation is due to the unique biochemical nature of this mutation.


Assuntos
Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Fatores de Transcrição/genética , Animais , Anormalidades do Olho , Heterozigoto , Camundongos , Fator de Transcrição Associado à Microftalmia , Mutação
5.
Proc Natl Acad Sci U S A ; 102(31): 10964-9, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16037214

RESUMO

In mammals, >100 genes regulate pigmentation by means of a wide variety of developmental, cellular, and enzymatic mechanisms. Nevertheless, genes that directly regulate pheomelanin production have not been described. Here, we demonstrate that the subtle gray (sut) mouse pigmentation mutant arose by means of a mutation in the Slc7a11 gene, encoding the plasma membrane cystine/glutamate exchanger xCT [Kanai, Y. & Endou, H. (2001) Curr. Drug Metab. 2, 339-354]. A resulting low rate of extracellular cystine transport into sut melanocytes reduces pheomelanin production. We show that Slc7a11 is a major genetic regulator of pheomelanin pigment in hair and melanocytes, with minimal or no effects on eumelanin. Furthermore, transport of cystine by xCT is critical for normal proliferation, glutathione production, and protection from oxidative stress in cultured cells. Thus, we have found that the Slc7a11 gene controls the production of pheomelanin pigment directly. Cells from sut mice provide a model for oxidative stress-related diseases and their therapies.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Melaninas/biossíntese , Animais , Transporte Biológico Ativo , Proliferação de Células , Células Cultivadas , Mapeamento Cromossômico , Cistina/metabolismo , Glutationa/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Camundongos Transgênicos , Estresse Oxidativo , Pigmentação da Pele/genética , Pigmentação da Pele/fisiologia
6.
Pigment Cell Res ; 16(4): 333-44, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12859616

RESUMO

Color loci in mammals are those genetic loci in which mutations can affect pigmentation of the hair, skin, and/or eyes. In the mouse, over 800 phenotypic alleles are now known, at 127 identified color loci. As the number of color loci passed 100 only recently, we celebrate this 'century' with an overview of these loci, especially the 59 that have been cloned and sequenced. These fall into a number of functional groups representing melanocyte development and differentiation, melanosomal components, organelle biogenesis, organelle transport, control of pigment-type switching, and some systemic effects. A human ortholog has been identified in all cases, and the majority of these human genes are found to be loci for human disorders, often affecting other body systems as well as pigmentation. We expect that a significant number of color loci remain to be identified. Nonetheless, the large number known already provide a treasury of resources for reconstruction of the mechanisms, at the subcellular, cellular and tissue levels, that produce a functional pigmentary system and contribute to the normal development and functioning of many other organ systems. The mutant mice also provide valuable models for the study of human disease.


Assuntos
Melanossomas/genética , Camundongos/genética , Pigmentação/genética , Animais , Diferenciação Celular , Genótipo , Humanos , Melaninas/genética , Melanócitos/citologia , Camundongos/anatomia & histologia , Camundongos Mutantes , Pigmentos Biológicos/genética
7.
Mamm Genome ; 15(10): 749-58, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15520878

RESUMO

The albino mouse was already known in ancient times and was apparently selectively bred in Egypt, China, and Japan. Thus, it is not surprising that the c or albino locus (now the Tyr locus) was among the first used to demonstrate Mendelian inheritance in mammals at the dawn of the past century. This locus is now known to encode tyrosinase, the rate-limiting enzyme in the production of melanin pigment, and the molecular basis of the albino ( Tyr(c)) mutation is known. Here we describe the congenic series of Tyr-locus alleles, from wild type to null ( albino). We compare eye and skin pigmentation phenotypes and the genetic lesions that cause each. We suggest that this panel of congenic mutants contains rich, untapped resources for the study of many questions of basic cell biological interest.


Assuntos
Albinismo/genética , Alelos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Mutação/genética , Animais , Camundongos , Camundongos Transgênicos
8.
J Cell Sci ; 116(Pt 15): 3203-12, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12829739

RESUMO

Oculocutaneous albinism (OCA) type 4 is a newly identified human autosomal recessive hypopigmentary disorder that disrupts pigmentation in the skin, hair and eyes. Three other forms of OCA have been previously characterized, each resulting from the aberrant processing and/or sorting of tyrosinase, the enzyme critical to pigment production in mammals. The disruption of tyrosinase trafficking occurs at the level of the endoplasmic reticulum (ER) in OCA1 and OCA3, but at the post-Golgi level in OCA2. The gene responsible for OCA4 is the human homologue of the mouse underwhite (uw) gene, which encodes the membrane-associated transporter protein (MATP). To characterize OCA4, we investigated the processing and sorting of melanogenic proteins in primary melanocytes derived from uw/uw mice and from wild-type mice. OCA4 melanocytes were found to be constantly secreted into the medium dark vesicles that contain tyrosinase and two other melanogenic enzymes, Tyrp1 (tyrosinase-related protein 1) and Dct (DOPAchrome tautomerase); this secretory process is not seen in wild-type melanocytes. Although tyrosinase was synthesized at comparable rates in wild-type and in uw-mutant melanocytes, tyrosinase activity in uw-mutant melanocytes was only about 20% of that found in wild-type melanocytes, and was enriched only about threefold in melanosomes compared with the ninefold enrichment in wild-type melanocytes. OCA4 melanocytes showed a marked difference from wild-type melanocytes in that tyrosinase was abnormally secreted from the cells, a process similar to that seen in OCA2 melanocytes, which results from a mutation of the pink-eyed dilution (P) gene. The P protein and MATP have 12 transmembrane regions and are predicted to function as transporters. Ultrastructural analysis shows that the vesicles secreted from OCA4 melanocytes are mostly early stage melanosomes. Taken together, our results show that in OCA4 melanocytes, tyrosinase processing and intracellular trafficking to the melanosome is disrupted and the enzyme is abnormally secreted from the cells in immature melanosomes, which disrupts the normal maturation process of those organelles. This mechanism explains the hypopigmentary phenotype of these cells and provides new insights into the involvement of transporters in the normal physiology of melanocytes.


Assuntos
Albinismo Oculocutâneo/fisiopatologia , Melanócitos/fisiologia , Monofenol Mono-Oxigenase/fisiologia , Oxirredutases , Albinismo Oculocutâneo/enzimologia , Albinismo Oculocutâneo/genética , Animais , Ativação Enzimática/fisiologia , Oxirredutases Intramoleculares/fisiologia , Melanócitos/enzimologia , Melanócitos/ultraestrutura , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia , Vesículas Secretórias/fisiologia , Pele/fisiopatologia , Pigmentação da Pele/fisiologia , Simportadores
9.
Am J Pathol ; 165(2): 491-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277223

RESUMO

The mi (microphthalmia) locus of mice encodes a transcription factor, MITF. B6-tg/tg mice that do not express any MITF have white coats and small eyes. Moreover, the number of mast cells decreased to one-third that of normal control (+/+) mice in the skin of B6-tg/tg mice. No mast cells were detectable in the stomach, mesentery, and peritoneal cavity of B6-tg/tg mice. Cultured mast cells derived from B6-tg/tg mice do not express a mast cell adhesion molecule, spermatogenic immunoglobulin superfamily (SgIGSF). To obtain in vivo evidence for the correlation of nonexpression of SgIGSF with decrease in mast cell number, we used another MITF mutant, B6-mi(vit)/mi(vit) mice that have a mild phenotype, ie, black coat with white patches and eyes of normal size. B6-mi(vit)/mi(vit) mice had a normal number of mast cells in the skin, stomach, and mesentery, but the number of peritoneal mast cells decreased to one-sixth that of +/+ mice. Cultured mast cells and peritoneal mast cells of B6-mi(vit)/mi(vit) mice showed a reduced but apparently detectable level of SgIGSF expression, demonstrating the parallelism between mast cell number and expression level of SgIGSF. The number of peritoneal mast cells appeared to be influenced by MITF through transcription of SgIGSF.


Assuntos
Adesão Celular , Proteínas de Ligação a DNA/fisiologia , Imunoglobulinas/metabolismo , Mastócitos/citologia , Proteínas de Membrana/metabolismo , Cavidade Peritoneal/citologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular , Contagem de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Imunoglobulinas/genética , Masculino , Mastócitos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia , Mutação , Células NIH 3T3 , Fenótipo , Fatores de Transcrição/genética
10.
Blood ; 104(10): 3181-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15265785

RESUMO

Hermansky-Pudlak syndrome (HPS), a disorder of organelle biogenesis, affects lysosomes, melanosomes, and platelet dense bodies. Seven genes cause HPS in humans (HPS1-HPS7) and at least 15 nonallelic mutations cause HPS in mice. Where their function is known, the HPS proteins participate in protein trafficking and vesicle docking/fusion events during organelle biogenesis. HPS-associated genes participate in at least 4 distinct protein complexes: the adaptor complex AP-3; biogenesis of lysosome-related organelles complex 1 (BLOC-1), consisting of 4 HPS proteins (pallidin, muted, cappuccino, HPS7/sandy); BLOC-2, consisting of HPS6/ruby-eye, HPS5/ruby-eye-2, and HPS3/cocoa; and BLOC-3, consisting of HPS1/pale ear and HPS4/light ear. Here, we report the cloning of the mouse HPS mutation reduced pigmentation (rp). We show that the wild-type rp gene encodes a novel, widely expressed 195-amino acid protein that shares 87% amino acid identity with its human orthologue and localizes to punctate cytoplasmic structures. Further, we show that phosphorylated RP is part of the BLOC-1 complex. In mutant rp/rp mice, a premature stop codon truncates the protein after 79 amino acids. Defects in all the 5 known components of BLOC-1, including RP, cause severe HPS in mice, suggesting that the subunits are nonredundant and that BLOC-1 plays a key role in organelle biogenesis.


Assuntos
Proteínas de Transporte/genética , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/fisiopatologia , Pigmentação/genética , Complexo 3 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Mapeamento Cromossômico , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Humanos , Lisossomos/fisiologia , Masculino , Melanócitos/citologia , Melanócitos/fisiologia , Melanoma , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Fenótipo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa