Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 111(5): 1469-1485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789009

RESUMO

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Assuntos
Picea , Traqueófitas , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Picea/genética , Traqueófitas/genética
2.
Mol Ecol ; 30(16): 3898-3917, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586257

RESUMO

As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.


Assuntos
Picea , Traqueófitas , Secas , Genômica , Fenótipo , Picea/genética , Traqueófitas/genética , Transcriptoma , Árvores/genética
3.
Plant J ; 90(1): 189-203, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28090692

RESUMO

Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.


Assuntos
Genoma de Planta/genética , Picea/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Sintenia
4.
Mol Ecol ; 26(21): 5989-6001, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833771

RESUMO

Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.


Assuntos
Mapeamento Cromossômico , Dosagem de Genes , Picea/genética , Adaptação Biológica/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Ligação Genética , Anotação de Sequência Molecular , Fenótipo , Quebeque
5.
Am J Bot ; 102(8): 1342-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290557

RESUMO

UNLABELLED: • Premises of the study: Understanding the influence of recent glacial and postglacial periods on species' distributions is key for predicting the effects of future environmental changes. We investigated the influence of two physiographic landscapes on population structure and postglacial colonization of two white pine species of contrasting habitats: P. monticola, which occurs in the highly mountainous region of western North America, and P. strobus, which occurs in a much less mountainous area in eastern North America.• METHODS: To characterize the patterns of genetic diversity and population structure across the ranges of both species, 158 and 153 single nucleotide polymorphism (SNP) markers derived from expressed genes were genotyped on range-wide samples of 61 P. monticola and 133 P. strobus populations, respectively.• KEY RESULTS: In P. monticola, a steep latitudinal decrease in genetic diversity likely resulted from postglacial colonization involving rare long-distance dispersal (LDD) events. In contrast, no geographic patterns of diversity were detected in P. strobus, suggesting recolonization via a gradually advancing front or frequent LDD events. For each species, structure analyses identified two distinct southern and northern genetic groups that likely originated from two different glacial lineages. At a finer scale, and for the two species, smaller subgroups were detected that could be remnants of cryptic refugia.• CONCLUSION: During postglacial colonization, the western and eastern North American landscapes had different impacts on genetic signatures in P. monticola compared with P. strobus. We discuss the importance of our findings for conservation programs and predictions of species' response to climate change.


Assuntos
Variação Genética , Pinus/fisiologia , Dispersão Vegetal , Canadá , Mudança Climática , Pinus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Estados Unidos
6.
Evol Appl ; 17(4): e13689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633131

RESUMO

Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.

7.
Nat Commun ; 12(1): 1169, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608515

RESUMO

Assisted gene flow between populations has been proposed as an adaptive forest management strategy that could contribute to the sequestration of carbon. Here we provide an assessment of the mitigation potential of assisted gene flow in 46 populations of the widespread boreal conifer Picea mariana, grown in two 42-year-old common garden experiments and established in contrasting Canadian boreal regions. We use a dendroecological approach taking into account phylogeographic structure to retrospectively analyse population phenotypic variability in annual aboveground net primary productivity (NPP). We compare population NPP phenotypes to detect signals of adaptive variation and/or the presence of phenotypic clines across tree lifespans, and assess genotype-by-environment interactions by evaluating climate and NPP relationships. Our results show a positive effect of assisted gene flow for a period of approximately 15 years following planting, after which there was little to no effect. Although not long lasting, well-informed assisted gene flow could accelerate the transition from carbon source to carbon sink after disturbance.


Assuntos
Carbono/metabolismo , Fluxo Gênico , Picea/genética , Picea/metabolismo , Taiga , Canadá , Sequestro de Carbono , Clima , Mudança Climática , Geografia , Estudos Retrospectivos , Temperatura , Traqueófitas , Árvores/genética
8.
Front Plant Sci ; 12: 675108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079574

RESUMO

Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.

9.
Mol Ecol ; 19(1): 132-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20002578

RESUMO

As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.


Assuntos
Genética Populacional , Hibridização Genética , Populus/genética , Canadá , Análise por Conglomerados , DNA de Cloroplastos/genética , DNA de Plantas/genética , Marcadores Genéticos , Haplótipos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
Evol Appl ; 13(1): 176-194, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892951

RESUMO

The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa