Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 242: 120235, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348424

RESUMO

Phthalic acid esters (phthalates) are an important group of additives (plasticizers) to ensure the flexibility and stability especially of polyvinyl chloride (PVC) and to enable its processing. However, phthalates like di(2-ethylhexyl) phthalate (DEHP) are harmful for aquatic organisms due to their endocrine disrupting effects and toxicity. For the assessment of exposure concentrations, thorough understanding of leaching kinetics of phthalates from PVC (micro-) plastics into aqueous environments is necessary. This study investigates how environmental factors influence the leaching of phthalates from PVC microplastics into aquatic systems. The leaching of phthalates from PVC microplastics into aqueous media is limited by aqueous boundary layer diffusion (ABLD) and thus, process-specific parameters can be affected by environmental factors such as salinity and the flow conditions. We conducted batch leaching experiments to assess the influence of salinity and flow conditions (turbulence) on the leaching of DEHP from PVC microplastics into aqueous media. DEHP is salted out with increasing salinity of the solution and a salting-out coefficient for DEHP of 0.46 was determined. The partitioning coefficient of DEHP between PVC and water KPVC/W increased with increasing salinity from 108.52 L kg-1 in a 1 mM KCl solution to 108.75 L kg-1 in artificial seawater thereby slowing down leaching. Increasing flow velocities led to higher leaching rates because the ABL thickness decreased from 1315 µm at 0 rpm shaking speed (no-flow conditions) to 38.4 µm at 125 rpm (turbulent conditions). Compared to salinity, turbulence had a more pronounced effect on leaching. Increasing the flow velocity led to a 35-fold decrease in the leaching rate, while increasing salinity led to a 2-fold increase. By calculating specific leaching times, that is, leaching half-lives (t1/2), time frames for leaching in different aquatic systems such as rivers and the ocean were determined. Given ABLD-limited leaching, DEHP is leached faster from PVC microplastics in rivers (t1/2 > 49 years) than in the ocean (t1/2 > 398 years). In both systems, PVC microplastics are a long-term source of phthalates.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plásticos , Dietilexilftalato/toxicidade , Microplásticos , Cloreto de Polivinila , Plastificantes/análise , Plastificantes/toxicidade , Água
2.
Environ Sci Eur ; 30(1): 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148026

RESUMO

BACKGROUND: The contamination of aquatic ecosystems with both anthropogenic pollutants and particles in particular (microscopic) plastic debris items is of emerging concern. Since plastic particles can accumulate contaminants and potentially facilitate their transport, it is important to properly investigate sorption mechanisms. This is especially required for a large variety of chemicals that can be charged under environmental conditions and for which interactions with particles may hence go beyond mere partitioning. RESULTS: In this study, sorption experiments with two types of microplastic particles (polyethylene and polystyrene) and 19 different contaminants (pesticides, pharmaceuticals, and personal care products) were performed at three different pH values. We could show that sorption to plastic particles is stronger for hydrophobic compounds and that neutral species usually contribute more to the overall sorption. Bulk partitioning coefficients were in the same order of magnitude for polyethylene and polystyrene. Furthermore, our results confirm that partition coefficients for polar compounds can only be accurately determined if the solid-to-liquid ratio in batch experiments is more than 6-7 orders of magnitude higher than any plastic concentration detected in the environment. Consequently, only a minor fraction of pollutants in water bodies is associated with microplastics. CONCLUSIONS: Although neutral species primarily dominate the overall sorption, hydrophobic entities of ionic species cannot be neglected for some compounds. Notwithstanding, our results show that since microplastic concentrations as currently observed in the environment are very low, they are only a relevant sorbent for strongly hydrophobic but not for polar compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa