RESUMO
OBJECTIVE: In this study, we aim to explore the genetic imprint of Bronze Age globalization in East Asia from a phylogeographic perspective by examining the Y-chromosome haplogroup Q1a1a-M120, and to identify key demographic processes involved in the formation of early China and the ancient Huaxia people. METHODS: Over the past few decades, we have collected the sequences of 347 Y chromosomes from the haplogroup Q1a1a-M120. These sequences were utilized to analyze and reconstruct a highly revised phylogenetic tree with age estimates. And we analyzed the geographical distribution and spatial autocorrelation of nine major sub-branches of Q1a1a-M120. Finally, we observed the expansion of Q1a1a-M120 from the beginning of the Bronze Age in East Asia, along with the continuous dissemination of its sub-lineages among East Asian populations. RESULTS: We suggest that certain sub-lineages played a significant role in the formation of states and early civilizations in China, as well as in the development of the ancient Huaxia people, who are the direct ancestors of the Han population. Overall, we propose that haplogroup Q-M120 played a role in the introduction of Bronze Age culture to the central region of East Asia. Therefore, it is haplogroup Q-M120, rather than the Western Eurasian paternal lineage, that expanded and contributed to the gene pool of the East Asian population. CONCLUSION: In summary, the globalization of the Bronze Age led to large-scale population replacement and admixture across various regions of Eurasia; our findings highlight the unique demographic processes that occurred in East Asia during this period.
RESUMO
The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.
Assuntos
Arqueologia , Cavernas/química , DNA Antigo/análise , Fósseis , Sedimentos Geológicos/análise , Migração Humana/história , Datação Radiométrica/métodos , China , História Antiga , HumanosRESUMO
Uniparental-inherited haploid genetic marker of Y-chromosome single nucleotide polymorphisms (Y-SNP) have the power to provide a deep understanding of the human evolutionary past, forensic pedigree, and bio-geographical ancestry information. Several international cross-continental or regional Y-panels instead of Y-whole sequencing have recently been developed to promote Y-tools in forensic practice. However, panels based on next-generation sequencing (NGS) explicitly developed for Chinese populations are insufficient to represent the Chinese Y-chromosome genetic diversity and complex population structures, especially for Chinese-predominant haplogroup O. We developed and validated a 639-plex panel including 633 Y-SNPs and 6 Y-Insertion/deletions, which covered 573 Y haplogroups on the Y-DNA haplogroup tree. In this panel, subgroups from haplogroup O accounted for 64.4% of total inferable haplogroups. We reported the sequencing metrics of 354 libraries sequenced with this panel, with the average sequencing depth among 226 individuals being 3,741×. We illuminated the high level of concordance, accuracy, reproducibility, and specificity of the 639-plex panel and found that 610 loci were genotyped with as little as 0.03 ng of genomic DNA in the sensitivity test. 94.05% of the 639 loci were detectable in male-female mixed DNA samples with a mix ratio of 1:500. Nearly all of the loci were genotyped correctly when no more than 25 ng/µL tannic acid, 20 ng/µL humic acid, or 37.5 µM hematin was added to the amplification mixture. More than 80% of genotypes were obtained from degraded DNA samples with a degradation index of 11.76. Individuals from the same pedigree shared identical genotypes in 11 male pedigrees. Finally, we presented the complex evolutionary history of 183 northern Chinese Hans and six other Chinese populations, and found multiple founding lineages that contributed to the northern Han Chinese gene pool. The 639-plex panel proved an efficient tool for Chinese paternal studies and forensic applications.
Assuntos
População do Leste Asiático , Polimorfismo de Nucleotídeo Único , Humanos , Genótipo , Reprodutibilidade dos Testes , Genética Populacional , Haplótipos , Cromossomos Humanos Y/genética , DNARESUMO
OBJECTIVES: Previous studies suggested that the Y-chromosome haplogroups O2-N6-B451-AM01756 and O1a-M119 are two founder lineages of proto-Austronesians at about five thousand years ago. The objective of this study was to investigate the formation of proto-Austronesians from the perspective of the paternal gene pool. MATERIALS AND METHODS: In this study, we developed a highly evised phylogenetic tree with age estimates for haplogroup O2-N6 and early branches of O1a-M119 (M110, F1036, and F819). In addition, we also explored the geographical distribution of eight sub-branches of O2-N6 and O1a-M119, and spatial autocorrelation analysis was conducted for each sub-branch. RESULTS: The paternal lineage combination of proto-Austronesians is a small subset of a diverse gene pool of populations from the mainland of East Asia. The distribution map and results of the spatial autocorrelation analysis suggested that the eastern coastal region of northern China is likely the source of lineage O2-N6 while the coastal region of southeastern China is likely the diffusion center of early branches of O1a-M119. We developed an evolutionary diagram for Austronesians and their ancestors in the past 18,000 years. DISCUSSION: We proposed that the millet farming community in North China is the common ancestor group of the Austronesians and the Han people, while the diverse ancient people in the southeast coastal areas of East Asia form the common ancestor group of the Austronesians and the East Asian mainland population. The demographic history of multiple ancestral groups of the most recent common ancestor group itself in the more ancient period is helpful to understand the deep roots of the genetic components and cultural traditions of Austronesians.
Assuntos
Cromossomos Humanos Y , Genética Populacional , Humanos , Filogeografia , Filogenia , Haplótipos/genética , Cromossomos Humanos Y/genética , Ásia OrientalRESUMO
We analysed the forensic characteristics and substructure of the Handan Han population based on 36 Y-STR (short tandem repeat) and Y-SNP (single nucleotide polymorphism) markers. The two most dominant haplogroups in Handan Han, O2a2b1a1a1-F8 (17.95%) and O2a2b1a2a1a (21.51%), and their abundant downstream branches, reflected the strong expansion of the precursor of the Hans in Handan. The present results enrich the forensic database and explore the genetic relationships between Handan Han and other neighbouring and/or linguistically close populations, which suggests that the current concise overview of the Han intricate substructure remains oversimplified.
Assuntos
Etnicidade , Genética Populacional , Humanos , Etnicidade/genética , China , Polimorfismo de Nucleotídeo Único , Repetições de Microssatélites/genética , Cromossomos Humanos Y , Frequência do Gene , HaplótiposRESUMO
In order to investigate the antibacterial mechanism of tea polyphenols and theaflavins against oral cariogenic bacteria, the pH value of the culture medium, the number of bacteria adhering to the smooth glass tube wall, and the electrical conductivity value within 10 h were measured, respectively. The effects of four concentrations of tea polyphenols and theaflavins below the MIC value were studied on acid production, adhesion, and electrical conductivity of oral cariogenic bacteria. The live/dead staining method was used to observe the effects of four concentrations of tea polyphenols and theaflavins below the MIC value on the biofilm formation of oral cariogenic bacteria under a laser scanning confocal microscope. With the increase in concentrations of tea polyphenols and theaflavins, the acid production and adhesion of the cariogenic bacteria gradually decreased, and the conductivity gradually increased. However, the conductivity increase was not significant (p < 0.05). Compared with the control group, the 1/2MIC and 1/4MIC tea polyphenols and theaflavins treatments significantly reduced the biomass of the cariogenic biofilm (p < 0.05). The confocal laser scanning microscope showed that the integrated optical density of green fluorescence of the cariogenic biofilm gradually decreased with the increase in agent concentration after the action of tea polyphenols and theaflavins.
Assuntos
Antibacterianos , Bactérias , Polifenóis/farmacologia , CháRESUMO
Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.
Assuntos
Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas , Endosperma/genética , Endosperma/metabolismo , Endogamia , Mutação , Fenótipo , Melhoramento Vegetal , Banco de Sementes , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Zea mays/metabolismoRESUMO
We analyzed the interaction between miR-25 and SNHG4 in papillary thyroid cancer (PTC). LncRNA SNHG4 was identified as an oncogene in osteosarcoma. We analyzed The Cancer Genome Atlas (TCGA) data and found that SNHG4 was downregulated in papillary thyroid cancer (PTC). Sixty patients with PTC were enrolled. SNHG4 expression in paired PTC tissues and adjacent normal tissues from the 60 PTC patients was analyzed by reverse transcription quantitative polymerase chain reaction. The proliferation of IHH-4 cells with SNHG4, miR-25 or FBXW7 overexpression was analyzed by cell proliferation assay. SNHG4 was downregulated in PTC tissues compared with the adjacent normal tissues of PTC patients. SNHG4 sponged with miR-25, while SNHG4 and miR-25 overexpression failed to alter each other. SNHG4 overexpression resulted in upregulated FBXW7, which is a targeted of miR-25. miR-25 overexpression increased PTC cell proliferation. Overexpression of SNHG4 and FBXW7 played an opposite role and abolished the effect of miR-25 overexpression. SNHG4 may interact with the miR-25/FBXW7 axis to suppress PTC cell proliferation.
Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismoRESUMO
BACKGROUND: Maize is one of the most important field crops in the world. Most of the key agronomic traits, including yield traits and plant architecture traits, are quantitative. Fine mapping of genes/ quantitative trait loci (QTL) influencing a key trait is essential for marker-assisted selection (MAS) in maize breeding. However, the SNP markers with high density and high polymorphism are lacking, especially kompetitive allele specific PCR (KASP) SNP markers that can be used for automatic genotyping. To date, a large volume of sequencing data has been produced by the next generation sequencing technology, which provides a good pool of SNP loci for development of SNP markers. In this study, we carried out a multi-step screening method to identify kompetitive allele specific PCR (KASP) SNP markers based on the RNA-Seq data sets of 368 maize inbred lines. RESULTS: A total of 2,948,985 SNPs were identified in the high-throughput RNA-Seq data sets with the average density of 1.4 SNP/kb. Of these, 71,311 KASP SNP markers (the average density of 34 KASP SNP/Mb) were developed based on the strict criteria: unique genomic region, bi-allelic, polymorphism information content (PIC) value ≥0.4, and conserved primer sequences, and were mapped on 16,161 genes. These 16,161 genes were annotated to 52 gene ontology (GO) terms, including most of primary and secondary metabolic pathways. Subsequently, the 50 KASP SNP markers with the PIC values ranging from 0.14 to 0.5 in 368 RNA-Seq data sets and with polymorphism between the maize inbred lines 1212 and B73 in in silico analysis were selected to experimentally validate the accuracy and polymorphism of SNPs, resulted in 46 SNPs (92.00%) showed polymorphism between the maize inbred lines 1212 and B73. Moreover, these 46 polymorphic SNPs were utilized to genotype the other 20 maize inbred lines, with all 46 SNPs showing polymorphism in the 20 maize inbred lines, and the PIC value of each SNP was 0.11 to 0.50 with an average of 0.35. The results suggested that the KASP SNP markers developed in this study were accurate and polymorphic. CONCLUSIONS: These high-density polymorphic KASP SNP markers will be a valuable resource for map-based cloning of QTL/genes and marker-assisted selection in maize. Furthermore, the method used to develop SNP markers in maize can also be applied in other species.
Assuntos
Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Clonagem Molecular , Marcadores Genéticos , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase , RNA-Seq , Seleção GenéticaRESUMO
Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs. High phylogenetic resolution within haplogroup C2a1a2-M48 was achieved by using additional SNPs. Three lines of evidence indicate that the Alimuly and Baiuly clans (but not the Zhetiru clan) have a common founder placed 700 ± 200 years back by the STR data and 500 ± 200 years back by the sequencing data. This supports traditional genealogy claims about the descent of these clans from Emir Alau, who lived 650 years ago and whose lineage might be carried by two-thirds of Western Kazakhs. There is accumulation of specific haplogroups in the subclans representing other lineages, confirming that the clan structure corresponds with the paternal genetic structure of the steppe population.
Assuntos
Cromossomos Humanos Y/genética , Genealogia e Heráldica , Haplótipos/genética , Filogenia , Efeito Fundador , Genótipo , Humanos , Cazaquistão/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
OBJECTIVES: The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS: Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS: A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION: Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.
Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Genética Populacional/métodos , Haplótipos/genética , Antropologia Física , Povo Asiático/classificação , China , Etnicidade/classificação , Humanos , MasculinoRESUMO
OBJECTIVES: Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS: Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS: C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION: We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.
Assuntos
Indígena Americano ou Nativo do Alasca , Povo Asiático , Cromossomos Humanos Y/genética , Migração Humana/história , Antropologia Física , Ásia Setentrional , Povo Asiático/classificação , Povo Asiático/genética , Povo Asiático/história , História Antiga , Humanos , Masculino , América do Norte , Filogenia , Indígena Americano ou Nativo do Alasca/classificação , Indígena Americano ou Nativo do Alasca/genética , Indígena Americano ou Nativo do Alasca/históriaRESUMO
OBJECTIVES: Haplogroup C2a-M48 is the predominant paternal lineage of Tungusic-speaking populations, one of the largest population groups in Siberia. Up until now, the origins and dispersal of Tungusic-speaking populations have remained unclear. In this study, the demographic history of Tungusic-speaking populations was explored using the phylogenetic analysis of haplogroup C2a-M86, the major subbranch of C2a-M48. MATERIALS AND METHODS: In total, 18 newly generated Y chromosome sequences from C2a-M48 males and 20 previously available Y-chromosome sequences from this haplogroup were analyzed. A highly revised phylogenetic tree of haplogroup C2a-M86 with age estimates was reconstructed. Frequencies of this lineage in the literature were collected and a comprehensive analysis of this lineage in 13 022 individuals from 245 populations in Eurasia was performed. RESULTS: The distribution map of C2a-M48 indicated the most probable area of origin and diffusion route of this paternal lineage in North Eurasia. Most C2a-M86 samples from Tungusic-speaking populations belonged to the sublineage C2a-F5484, which emerged about 3300 years ago. We identified six unique sublineages corresponding to the Manchu, Evenks, Evens, Oroqen, and Daurpopulations; these sublineages diverged gradually over the past 1900 years. Notably, we observed a clear north-south dichotomous structure for sublineages derived from C2a-F5484, consistent with the internal north-south divergence of Tungusic languages and ethnic groups. CONCLUSIONS: We identified the important founding paternal haplogroup, C2a-F5484, for Tungusic-speaking populations as well as numerous unique subgroups of this haplogroup. We propose that the timeframe for the divergence of C2a-F5484 corresponds with the early differentiation of ancestral Tungusic-speaking populations.
Assuntos
Cromossomos Humanos Y/genética , Etnicidade/genética , Migração Humana , Filogenia , Haplótipos , Humanos , Masculino , Sibéria/etnologiaRESUMO
OBJECTIVES: The origin and differentiation of Austronesian populations and their languages have long fascinated linguists, archeologists, and geneticists. However, the founding process of Austronesians and when they separated from their close relatives, such as the Daic and Austro-Asiatic populations in the mainland of Asia, remain unclear. In this study, we explored the paternal origin of Malays in Southeast Asia and the early differentiation of Austronesians. MATERIALS AND METHODS: We generated whole Y-chromosome sequences of 50 Malays and co-analyzed 200 sequences from other Austronesians and related populations. We generated a revised phylogenetic tree with time estimation. RESULTS: We identified six founding paternal lineages among the studied Malays samples. These founding lineages showed a surprisingly coincident expansion age at 5000 to 6000 years ago. We also found numerous mostly close related samples of the founding lineages of Malays among populations from Mainland of Asia. CONCLUSION: Our analyses provided a refined phylogenetic resolution for the dominant paternal lineages of Austronesians found by previous studies. We suggested that the co-expansion of numerous founding paternal lineages corresponds to the initial differentiation of the most recent common ancestor of modern Austronesians. The splitting time and divergence pattern in perspective of paternal Y-chromosome evidence are highly consistent with the previous theories of ethnologists, linguists, and archeologists.
Assuntos
Cromossomos Humanos Y/genética , Pool Gênico , Migração Humana , Herança Paterna , Sudeste Asiático , Humanos , FilogeniaRESUMO
BACKGROUND: In recent decades, considerable attention has been paid to exploring the population genetic characteristics of Han Chinese, mainly documenting a north-south genetic substructure. However, the central Han Chinese have been largely underrepresented in previous studies. AIM: To infer a comprehensive understanding of the homogenisation process and population history of Han Chinese. SUBJECTS AND METHODS: We collected samples from 122 Han Chinese from seven counties of Hubei province in central China and genotyped 534,000 genome-wide SNPs. We compared Hubei Han with both ancient and present-day Eurasian populations using Principal Component Analysis, ADMIXTURE, f statistics, qpWave and qpAdm. RESULTS: We observed Hubei Han Chinese are at a genetically intermediate position on the north-south Han Chinese cline. We have not detected any significant genetic substructure in the studied groups from seven different counties. Hubei Han show significant evidence of genetic admixture deriving about 63% of ancestry from Tai-Kadai or Austronesian-speaking southern indigenous groups and 37% from Tungusic or Mongolic related northern populations. CONCLUSIONS: The formation of Han Chinese has involved extensive admixture with Tai-Kadai or Austronesian-speaking populations in the south and Tungusic or Mongolic speaking populations in the north. The convenient transportation and central location of Hubei make it the key region for the homogenisation of Han Chinese.
Assuntos
Etnicidade/genética , Genótipo , Migração Humana , Polimorfismo de Nucleotídeo Único , China , Humanos , Análise de Componente PrincipalRESUMO
BACKGROUND: The Functional Assessment Of Chronic Illness Therapy-Spiritual Well-Being-Expanded (FACIT-Sp-Ex) scale can simultaneously evaluate the quality of life and spiritual health level of patients with chronic orthopaedic diseases. We performed the FACIT-Sp-Ex scale in Chinese, and tested its reliability and validity in patients with chronic orthopaedic diseases. METHODS: There were 249 patients with chronic orthopaedic diseases who were selected for the questionnaire survey. AMOS 23.0 and SPSS 25.0 were used for statistical analysis to calculate the reliability and validity of the Chinese version of the scale. RESULTS: The Chinese version of FACIT-Sp-Ex scale showed that root mean square error of approximation (RMSEA) was 0.06. Cronbach's alpha coefficient was 0.83, the subscale was 0.72 ~ 0.82. The meaning, peace, relational subscales and total scale of the FACIT-Sp-Ex were negatively correlated with hospital anxiety and depression scale (HADS) and positively correlated with health-related quality of life (HRQOL). All four subdomains were inversely associated with HADS anxiety symptoms, the peace and relational subscales were inversely associated with HADS depressive symptoms. Elderly female patients score higher than male patients in faith subscale. The highest-scoring disease in FACIT-Sp-Ex faith scale was osteoarthritis, which in FACIT-Sp-Ex total scale are piriformis syndrome and osteoarthritis. CONCLUSION: The Chinese version of FACIT-Sp-Ex scale has good reliability and validity, which can be used as an evaluation tool for the spiritual status and quality of life of Chinese elderly chronic orthopaedic patients.
Assuntos
Doença Crônica , Doenças Musculoesqueléticas , Neoplasias , Espiritualidade , Idoso , Feminino , Humanos , Masculino , Doenças Musculoesqueléticas/complicações , Doenças Musculoesqueléticas/psicologia , Psicometria , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e QuestionáriosRESUMO
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening haematological emergency. Although therapeutic plasma exchange together with corticosteroids achieve successful outcomes, a considerable number of patients remain refractory to this treatment and require early initiation of intensive therapy. However, a method for the early identification of refractory iTTP is not available. To develop and validate a model for predicting the probability of refractory iTTP, a cohort of 265 consecutive iTTP patients from 17 large medical centres was retrospectively identified. The derivation cohort included 94 patients from 11 medical centres. For the validation cohort, we included 40 patients from the other six medical centres using geographical validation. An easy-to-use risk score system was generated, and its performance was assessed using internal and external validation cohorts. In the multivariable logistic analysis of the derivation cohort, three candidate predictors were entered into the final prediction model: age, haemoglobin and creatinine. The prediction model had an area under the curve of 0.886 (95% CI: 0.679-0.974) in the internal validation cohort and 0.862 (95% CI: 0.625-0.999) in the external validation cohort. The calibration plots showed a high agreement between the predicted and observed outcomes. In conclusion, we developed and validated a highly accurate prediction model for the early identification of refractory iTTP. It has the potential to guide tailored therapy and is a step towards more personalized medicine.
Assuntos
Creatinina/sangue , Bases de Dados Factuais , Hemoglobinas/metabolismo , Modelos Biológicos , Púrpura Trombocitopênica Trombótica/sangue , Adulto , Fatores Etários , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de RiscoRESUMO
Human Y-chromosome haplogroup C2b-F1067 is one of the dominant paternal lineages of populations in Eastern Eurasia. In order to explore the origin, diversification, and expansion of this haplogroup, we generated 206 new Y-chromosome sequences from C2b-F1067 males and coanalyzed 220 Y-chromosome sequences of this haplogroup. BEAST software was used to reconstruct a revised phylogenetic tree of haplogroup C2b-F1067 with age estimates. The revised phylogeny of C2b-F1067 included 155 sublineages, 1986 non-private variants, and >6000 private variants. The age estimation suggested that the initial splitting of C2b-F1067 happened at about 32.8 thousand years ago (kya) and the major sublineages of this haplgroup experienced continuous expansion in the most recent 10,000 years. We identified numerous sublineages that were nearly specific for Korean, Mongolian, Chinese, and other ethnic minorities in China. In particular, we evaluated the candidate-specific lineage for the Dayan Khan family and the Confucius family, the descendants of the ruling family of the Chinese Shang dynasty. These findings suggest that ancient populations with varied C2b-F1067 sublineages played an important role during the formation of most modern populations in Eastern Eurasia, and thus eventually became the founding paternal lineages of these populations.
Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Haplótipos/genética , Migração Humana , Filogenia , Povo Asiático/classificação , Povo Asiático/história , Etnicidade/história , Ásia Oriental , História Antiga , Humanos , Masculino , Paternidade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Aksay Kazakhs are the easternmost branch of Kazakhs, residing in Jiuquan city, the forefront of the ancient Silk Road. However, the genetic diversity of Aksay Kazakhs and its relationships with other Kazakhs still lack attention. To clarify this issue, we analyzed the non-recombining portion of the Y-chromosome from 93 Aksay Kazakhs samples, using a high-resolution analysis of 106 biallelic markers and 17 STRs. The lowest haplogroup diversity (0.38) was observed in Aksay Kazakhs among all studied Kazakh populations. The social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation. Aksay Kazakhs tended to migrate with clans and had limited paternal admixture with neighboring populations. Aksay Kazakhs had the highest frequency (80%) of haplogroup C2b1a3a1-F3796 (previous C3*-Star Cluster) among the investigated Eurasian steppe populations, which was now seen as the genetic marker of Kerei clan. Furthermore, NETWORK analysis indicated that Aksay Kazakhs originated from sub-clan Kerei-Abakh in Kazakhstan with DYS448 = 23. TMRCA estimates of three recent descent clusters detected in C2*-M217 (xM48) network, one of which incorporate nearly all of the C2b1a3a1-F3796 Aksay Kazakhs samples, gave the age range of 976-1405 YA for DC1, 1059-1314 YA for DC2, and 1139-1317 YA for DC3, respectively; this is coherent with the 7th to the 11th centuries Altaic-speaking pastoral nomadic population expansion.
Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , China , Marcadores Genéticos , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: The majority of the Kazakhs from South Kazakhstan belongs to the 12 clans of the Senior Zhuz. According to traditional genealogy, nine of these clans have a common ancestor and constitute the Uissun tribe. There are three main hypotheses of the clans' origin, namely, origin from early Wusuns, from Niru'un Mongols, or from Darligin Mongols. We genotyped 490 samples of South Kazakhs by 35 Y-chromosomal SNPs (single nucleotide polymorphism) and 17 STRs (short tandem repeat). Additionally, 133 samples from citizen science projects were included into the study. RESULTS: We found that three Uissun clans have unique Y-chromosomal profiles, but the remaining six Uissun clans and one non-Uissun clan share a common paternal gene pool. They share a high frequency (> 40%) of the C2*-ST haplogroup (marked by the SNP F3796), which is associated with the early Niru'un Mongols. Phylogenetic analysis of this haplogroup carried out on 743 individuals from 25 populations of Eurasia has revealed a set of haplotype clusters, three of which contain the Uissun haplotypes. The demographic expansion of these clusters dates back to the 13-fourteenth century, coinciding with the time of the Uissun's ancestor Maiky-biy known from historical sources. In addition, it coincides with the expansion period of the Mongol Empire in the Late Middle Ages. A comparison of the results with published aDNA (ancient deoxyribonucleic acid) data and modern Y haplogroups frequencies suggest an origin of Uissuns from Niru'un Mongols rather than from Wusuns or Darligin Mongols. CONCLUSIONS: The Y-chromosomal variation in South Kazakh clans indicates their common origin in 13th-14th centuries AD, in agreement with the traditional genealogy. Though genetically there were at least three ancestral lineages instead of the traditional single ancestor. The majority of the Y-chromosomal lineages of South Kazakhstan was brought by the migration of the population related to the medieval Niru'un Mongols.