Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338943

RESUMO

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Melanoma/genética , Oncogenes , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
2.
J Cell Sci ; 132(24)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31767623

RESUMO

Melanocytic cell interactions are integral to skin homeostasis, and affect the outcome of multiple diseases, including cutaneous pigmentation disorders and melanoma. By using automated-microscopy and machine-learning-assisted morphology analysis of primary human melanocytes in co-culture, we performed combinatorial interrogation of melanocyte genotypic variants and functional assessment of lentivirus-introduced mutations. Keratinocyte-induced melanocyte dendricity, an indicator of melanocyte differentiation, was reduced in the melanocortin 1 receptor (MC1R) R/R variant strain and by NRAS.Q61K and BRAF.V600E expression, while expression of CDK4.R24C and RAC1.P29S had no detectable effect. Time-lapse tracking of melanocytes in co-culture revealed dynamic interaction phenotypes and hyper-motile cell states that indicated that, in addition to the known role in activating mitogenic signalling, MEK-pathway-activating mutations may also allow melanocytes to escape keratinocyte control and increase their invasive potential. Expanding this combinatorial platform will identify other therapeutic target mutations and melanocyte genetic variants, as well as increase understanding of skin cell interactions.


Assuntos
Fibroblastos/citologia , Queratinócitos/citologia , Melanócitos/citologia , Comunicação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Fibroblastos/fisiologia , Humanos , Aprendizado de Máquina , Transdução de Sinais/fisiologia
3.
Mol Oncol ; 13(7): 1503-1518, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31044505

RESUMO

Drugs such as gemcitabine that increase replication stress are effective chemotherapeutics in a range of cancer settings. These drugs effectively block replication and promote DNA damage, triggering a cell cycle checkpoint response through the ATR-CHK1 pathway. Inhibiting this signalling pathway sensitises cells to killing by replication stress-inducing drugs. Here, we investigated the effect of low-level replication stress induced by low concentrations (> 0.2 mm) of the reversible ribonucleotide reductase inhibitor hydroxyurea (HU), which slows S-phase progression but has little effect on cell viability or proliferation. We demonstrate that HU effectively synergises with CHK1, but not ATR inhibition, in > 70% of melanoma and non-small-cell lung cancer cells assessed, resulting in apoptosis and complete loss of proliferative potential in vitro and in vivo. Normal fibroblasts and haemopoietic cells retain viability and proliferative potential following exposure to CHK1 inhibitor plus low doses of HU, but normal cells exposed to CHK1 inhibitor combined with submicromolar concentrations of gemcitabine exhibited complete loss of proliferative potential. The effects of gemcitabine on normal tissue correlate with irreversible ATR-CHK1 pathway activation, whereas low doses of HU reversibly activate CHK1 independently of ATR. The combined use of CHK1 inhibitor and subclinical HU also triggered an inflammatory response involving the recruitment of macrophages in vivo. These data indicate that combining CHK1 inhibitor with subclinical HU is superior to combination with gemcitabine, as it provides equal anticancer efficacy but with reduced normal tissue toxicity. These data suggest a significant proportion of melanoma and lung cancer patients could benefit from treatment with this drug combination.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Hidroxiureia/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Desoxicitidina/efeitos adversos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Progressão da Doença , Feminino , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Neoplasias Pulmonares/patologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Gencitabina
4.
Clin Cancer Res ; 24(12): 2901-2912, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29535131

RESUMO

Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , Melanoma/metabolismo , Estresse Fisiológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Melanoma Res ; 17(5): 316-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17885587

RESUMO

Active boosting of the antitumour immune response of patients with solid malignancies has been tested in a large number of trials. Isolated complete clinical responses have been reported, however, they have not been replicated in subsequent studies. We recently reported objective clinical responses to a dendritic cell/irradiated autologous tumour cell 'vaccine' in patients with distant metastatic (stage IV) melanoma. Here we describe our experience in a second cohort of patients with stage IV melanoma, using this dendritic cell-based immunotherapy in a cryopreserved format. Of 46 patients enrolled into the study, three had complete remission of all detectable disease, and a further three had partial clinical responses. These data confirm that dendritic cell-based immunotherapy has potential as a therapy in a limited number of patients with stage IV melanoma. To our knowledge, this is the first demonstration that cryopreserved dendritic cells can elicit complete clinical responses in patients with advanced cancer. Our observations support randomized controlled trials to validate the findings.


Assuntos
Vacinas Anticâncer , Células Dendríticas/imunologia , Imunoterapia/métodos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Adulto , Idoso , Feminino , Humanos , Imunofenotipagem , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Monócitos/citologia , Estadiamento de Neoplasias , Prognóstico , Neoplasias Cutâneas/patologia , Fatores de Tempo , Resultado do Tratamento
6.
Oncotarget ; 6(19): 17753-63, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25980496

RESUMO

To identify 'melanoma-specific' microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA 'pull-down' experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , MicroRNAs/genética , Neurofibromina 1/biossíntese , Proteínas Proto-Oncogênicas B-raf/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Indóis/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Mutagênese Sítio-Dirigida , Neurofibromina 1/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Sulfonamidas/farmacologia , Transfecção , Vemurafenib
7.
PLoS One ; 9(11): e110741, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368986

RESUMO

While cloned T cells are valuable tools for the exploration of immune responses against viruses and tumours, current cloning methods do not allow inferences to be made about the function and phenotype of a clone's in vivo precursor, nor can precise cloning efficiencies be calculated. Additionally, there is currently no general method for cloning antigen-specific effector T cells directly from peripheral blood mononuclear cells, without the need for prior expansion in vitro. Here we describe an efficient method for cloning effector T cells ex vivo. Functional T cells are detected using optimised interferon gamma capture following stimulation with viral or tumour cell-derived antigen. In combination with multiple phenotypic markers, single effector T cells are sorted using a flow cytometer directly into multi-well plates, and cloned using standard, non antigen-specific expansion methods. We provide examples of this novel technology to generate antigen-reactive clones from healthy donors using Epstein-Barr virus and cytomegalovirus as representative viral antigen sources, and from two melanoma patients using autologous melanoma cells. Cloning efficiency, clonality, and retention/loss of function are described. Ex vivo effector cell cloning provides a rapid and effective method of deriving antigen-specific T cells clones with traceable in vivo precursor function and phenotype.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Citomegalovirus/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Herpesvirus Humano 4/metabolismo , Humanos , Interferon gama/análise , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia
8.
Nat Genet ; 44(2): 165-9, 2011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-22197930

RESUMO

We sequenced eight melanoma exomes to identify new somatic mutations in metastatic melanoma. Focusing on the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family, we found that 24% of melanoma cell lines have mutations in the protein-coding regions of either MAP3K5 or MAP3K9. Structural modeling predicted that mutations in the kinase domain may affect the activity and regulation of these protein kinases. The position of the mutations and the loss of heterozygosity of MAP3K5 and MAP3K9 in 85% and 67% of melanoma samples, respectively, together suggest that the mutations are likely to be inactivating. In in vitro kinase assays, MAP3K5 I780F and MAP3K9 W333* variants had reduced kinase activity. Overexpression of MAP3K5 or MAP3K9 mutants in HEK293T cells reduced the phosphorylation of downstream MAP kinases. Attenuation of MAP3K9 function in melanoma cells using siRNA led to increased cell viability after temozolomide treatment, suggesting that decreased MAP3K pathway activity can lead to chemoresistance in melanoma.


Assuntos
MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinases/genética , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Antineoplásicos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Exoma , Humanos , Perda de Heterozigosidade , Melanoma/tratamento farmacológico , Melanoma/secundário , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Temozolomida , Células Tumorais Cultivadas
9.
Immunol Cell Biol ; 84(3): 295-302, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16681827

RESUMO

Current treatment options for advanced metastatic melanoma are limited to experimental regimen that provide poor survival outcomes. Immunotherapy is a promising alternative and we recently reported a clinical trial in which 6 out of 19 patients enrolled had objective clinical responses to a fully autologous melanoma/dendritic cell vaccine. The mechanism of the vaccine is not well understood, but we hypothesized that general immunocompetence may be a determinant of clinical response. We therefore examined the immune status of an expanded series of 21 patients who displayed varying clinical responses to the melanoma/dendritic cell vaccine. Immunocompetence was assessed using in vitro assays of lymphocyte function: survival, proliferation and cytokine responses to mitogen stimulation as well as T-cell receptor zeta expression and lymphocyte subset analysis. Although lymphocytes from patients mostly performed comparably to age-matched and sex-matched controls, in some assays we identified significant differences between complete clinical responders and other patients, both before and following vaccination. Surprisingly, before vaccination, only lymphocytes from clinical responder patients showed impaired in vitro survival. Following vaccination, T lymphocyte survival improved and cells recovered their ability to produce the Th1-associated cytokines TNF and IFN-gamma in response to anti-CD3 stimulation in vitro. No increase in Th1 cytokine production was observed in lymphocytes from patients who experienced partial clinical responses or progressive disease. We conclude that, before vaccination, patients who go on to have complete responses have immune characteristics suggestive of high cell turnover and low Th1-associated cytokine production, and that these can be reversed with vaccination. These results have potential implications for future immunotherapeutic strategies.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Imunoterapia , Melanoma/terapia , Neoplasias Cutâneas/terapia , Linfócitos T/imunologia , Adulto , Idoso , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/secundário , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Taxa de Sobrevida
10.
Cancer Immunol Immunother ; 52(6): 387-95, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12682787

RESUMO

Advanced metastatic melanoma is incurable by standard treatments, but occasionally responds to immunotherapy. Recent trials using dendritic cells (DC) as a cellular adjuvant have concentrated on defined peptides as the source of antigens, and rely on foreign proteins as a source of help to generate a cell-mediated immune response. This approach limits patient accrual, because currently defined, non-mutated epitopes are restricted by a small number of human leucocyte antigens. It also fails to take advantage of mutated epitopes peculiar to the patient's own tumour, and of CD4+ T lymphocytes as potential effectors of anti-tumour immunity. We therefore sought to determine whether a fully autologous DC vaccine is feasible, and of therapeutic benefit. Patients with American Joint Cancer Committee stage IV melanoma were treated with a fully autologous immunotherapy consisting of monocyte-derived DC, matured after culture with irradiated tumour cells. Of 19 patients enrolled into the trial, sufficient tumour was available to make treatments for 17. Of these, 12 received a complete priming phase of six cycles of either 0.9x10(6) or 5x10(6) DC/intradermal injection, at 2-weekly intervals. Where possible, treatment continued with the lower dose at 6-weekly intervals. The remaining five patients could not complete priming, due to progressive disease. Three of the 12 patients who completed priming have durable complete responses (average duration 35 months+), three had partial responses, and the remaining six had progressive disease (WHO criteria). Disease regression was not correlated with dose or with the development of delayed type hypersensitivity responses to intradermal challenge with irradiated, autologous tumour. However, plasma S-100B levels prior to the commencement of treatment correlated with objective clinical response ( P=0.05) and survival (log rank P<0.001). The treatment had minimal side-effects and was well tolerated by all patients. Mature, monocyte-derived DC preparations exposed to appropriate tumour antigen sources can be reliably produced for patients with advanced metastatic melanoma, and in a subset of those patients with lower volume disease their repeated administration results in durable complete responses.


Assuntos
Vacinas Anticâncer , Células Dendríticas/imunologia , Melanoma/imunologia , Melanoma/terapia , Neoplasias Cutâneas/imunologia , Adulto , Idoso , Divisão Celular , Células Dendríticas/citologia , Feminino , Humanos , Imunofenotipagem , Imunoterapia/métodos , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Monócitos/citologia , Metástase Neoplásica , Fatores de Crescimento Neural , Prognóstico , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/sangue , Neoplasias Cutâneas/terapia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa