Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 5(28): 17347-17355, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715219

RESUMO

The interactions of proteins and other molecules and their adsorption onto substrates is a fascinating topic that has been applied to surface technologies, biosensors, corrosion studies, biotechnologies, and other fields. The success of these applications requires a previous characterization using some analytical techniques that, ordinarily, are not electrochemical. This work proposes analyzing the variation of the double-layer capacitance obtained through impedance electrochemical spectroscopy as an alternative strategy to show evidence of the interactions between proteins and triblock copolymers. The proposal is supported through the study of the interaction and adsorption of bovine serum albumin (BSA) and a commercial triblock copolymer (P103) in phosphate buffer on a gold electrode. The double-layer capacitance and the apparent interface thickness vs polarization potential curves as well as the potential of zero charge for pure P103 (0.6 wt %, corresponding to 6 g L-1), pure BSA (3 mg mL-1), and P103-BSA solutions (0.6 wt % and 3 mg mL-1, respectively) are sensitive enough to show not only the interaction and the adsorption of the species but also the polarization potential where these interactions are taking place. A qualitative and quantitative analysis concerning the double-layer capacitance behavior is given. The significance and impact of this work is also presented.

2.
Materials (Basel) ; 13(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957600

RESUMO

Nanostructured films with electrical conductivity in the semiconductor region were prepared in a polymeric matrix of poly(vinyl alcohol) (PVA) with nanostructures of chitosan-gold nanoparticles (AuNPs)/single-wall carbon nanotubes carboxylic acid functionalized (SWCNT-COOH) (chitosan-AuNPs/SWCNT-COOH) self-assembled. Dispersion light scattering (DLS) was used to determine the average particle sizes of chitosan-AuNPs, z-average particle size (Dz) and number average particle size (Dn), and the formation of crystalline domains of AuNPs was demonstrated by X-ray diffraction (XRD) patterns and observed by means of transmission electron microscopy (TEM). The electrostatic interaction was verified by Fourier transform infrared spectroscopy (FTIR). The electrical conductivity of PVA/chitosan-AuNPs/SWCNT-COOH was determined by the four-point technique and photocurrent. The calculated Dn values of the chitosan-AuNPs decreased as the concentration of gold (III) chloride trihydrate (HAuCl4·3H2O) increased: the concentrations of 0.4 and 1.3 mM were 209 and 90 nm, respectively. Average crystal size (L) and number average size (D) of the AuNPs were calculated in the range of 13 to 24 nm. Electrical conductivity of PVA/chitosan-AuNPs/SWCNT-COOH films was 3.7 × 10-5 σ/cm determined by the four-point technique and 6.5 × 10-4 σ/cm by photocurrent for the SWCNT-COOH concentration of 0.5 wt.% and HAuCl4·3H2O concentration of 0.4 mM. In this investigation, the protonation of the amine group of chitosan is fundamental to prepare PVA films with nanostructures of self-assembled chitosan-AuNPs/SWCNT-COOH.

3.
J Phys Chem B ; 116(38): 11720-7, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22934621

RESUMO

The kinetics of the sphere-to-rod transition was studied in aqueous micelle solutions of triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) pluronic P103 (PEO(17)PPO(60)PEO(17)). This transition was triggered by a temperature jump from the sphere phase to the rod phase and monitored with dynamic light scattering. The combination of the scattering intensity and the hydrodynamic radius were used to show that the micelles grow steadily as rods throughout the growth process. The transition was found to exhibit a single exponential behavior even in the case of large deviations from equilibrium. The linear increase in the decay rate with increasing copolymer concentration shows that the transition is dominated by a mechanism involving fusion and fragmentation of proper micelles. The decays of the sphere-to-rod transition were simulated for two pathways: random fusion fragmentation and successive addition of spherical micelles to rods. We show that micelle growth most likely occurs via random fusion-fragmentation. The second order rate constant for fusion and the fragmentation rate are calculated for the case of random fusion-fragmentation.


Assuntos
Poloxâmero/química , Cinética , Luz , Micelas , Espalhamento de Radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa