Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO J ; 39(19): e104319, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915464

RESUMO

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Assuntos
Colo/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Feminino , Proteína Forkhead Box M1/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755534

RESUMO

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Assuntos
Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Interleucinas/farmacologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos Knockout , Organoides/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ativação Transcricional/fisiologia , Interleucina 22
3.
Microb Cell Fact ; 19(1): 219, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256731

RESUMO

BACKGROUND: Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS: Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS: Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta , Fezes/microbiologia , Metaboloma , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Akkermansia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias do Colo/microbiologia , DNA Bacteriano , Feminino , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , RNA Ribossômico 16S , Receptores de Hidrocarboneto Arílico/genética
4.
Biochemistry ; 55(37): 5243-55, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27552286

RESUMO

Endocannabinoids (ECs) and cannabinoids are very lipophilic molecules requiring the presence of cytosolic binding proteins that chaperone these molecules to intracellular targets. While three different fatty acid binding proteins (FABP3, -5, and -7) serve this function in brain, relatively little is known about how such hydrophobic ECs and cannabinoids are transported within the liver. The most prominent hepatic FABP, liver fatty acid binding protein (FABP1 or L-FABP), has high affinity for arachidonic acid (ARA) and ARA-CoA, suggesting that FABP1 may also bind ARA-derived ECs (AEA and 2-AG). Indeed, FABP1 bound ECs with high affinity as shown by displacement of FABP1-bound fluorescent ligands and by quenching of FABP1 intrinsic tyrosine fluorescence. FABP1 also had high affinity for most non-ARA-containing ECs, FABP1 inhibitors, EC uptake/hydrolysis inhibitors, and phytocannabinoids and less so for synthetic cannabinoid receptor (CBR) agonists and antagonists. The physiological impact was examined with liver from wild-type (WT) versus FABP1 gene-ablated (LKO) male mice. As shown by liquid chromatography and mass spectrometry, FABP1 gene ablation significantly increased hepatic levels of AEA, 2-AG, and 2-OG. These increases were not due to increased protein levels of EC synthetic enzymes (NAPEPLD and DAGL) or a decreased level of EC degradative enzyme (FAAH) but correlated with complete loss of FABP1, a decreased level of SCP2 (8-fold less prevalent than FABP1, but also binds ECs), and a decreased level of degradative enzymes (NAAA and MAGL). These data indicated that FABP1 not only is the most prominent endocannabinoid and cannabinoid binding protein but also impacts hepatic endocannabinoid levels.


Assuntos
Endocanabinoides/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Feminino , Corantes Fluorescentes , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Biochim Biophys Acta ; 1851(7): 946-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732850

RESUMO

Although expression of the human liver fatty acid binding protein (FABP1) T94A variant alters serum lipoprotein cholesterol levels in human subjects, nothing is known whereby the variant elicits these effects. This issue was addressed by in vitro cholesterol binding assays using purified recombinant wild-type (WT) FABP1 T94T and T94A variant proteins and in cultured primary human hepatocytes expressing the FABP1 T94T (genotyped as TT) or T94A (genotyped as CC) proteins. The human FABP1 T94A variant protein had 3-fold higher cholesterol-binding affinity than the WT FABP1 T94T as shown by NBD-cholesterol fluorescence binding assays and by cholesterol isothermal titration microcalorimetry (ITC) binding assays. CC variant hepatocytes also exhibited 30% higher total FABP1 protein. HDL- and LDL-mediated NBD-cholesterol uptake was faster in CC variant than TT WT human hepatocytes. VLDL-mediated uptake of NBD-cholesterol did not differ between CC and TT human hepatocytes. The increased HDL- and LDL-mediated NBD-cholesterol uptake was not associated with any significant change in mRNA levels of SCARB1, LDLR, CETP, and LCAT encoding the key proteins in lipoprotein cholesterol uptake. Thus, the increased HDL- and LDL-mediated NBD-cholesterol uptake by CC hepatocytes may be associated with higher affinity of T94A protein for cholesterol and/or increased total T94A protein level.


Assuntos
Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Hepatócitos/metabolismo , Mutação de Sentido Incorreto , Alanina/genética , Substituição de Aminoácidos , Animais , Transporte Biológico/genética , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Pessoa de Meia-Idade , Treonina/genética
6.
J Neurochem ; 138(3): 407-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167970

RESUMO

Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371.


Assuntos
Ácidos Araquidônicos/metabolismo , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Fígado/metabolismo , Ácidos Oleicos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Animais , Ácidos Araquidônicos/genética , Encéfalo/efeitos dos fármacos , Endocanabinoides/genética , Glicerídeos/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Am J Physiol Gastrointest Liver Physiol ; 309(5): G387-99, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26113298

RESUMO

While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol na Dieta/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Apolipoproteína B-100 , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas de Transporte/genética , Colesterol na Dieta/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Receptor fas/genética , Receptor fas/metabolismo , Esterol O-Aciltransferase 2
8.
Arch Biochem Biophys ; 580: 41-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116377

RESUMO

Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD).


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a Ácido Graxo/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Proteínas de Transporte/metabolismo , Colesterol/sangue , Ésteres do Colesterol/sangue , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/deficiência , Ácidos Graxos não Esterificados/sangue , Feminino , Deleção de Genes , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipídeos/sangue , Triglicerídeos/sangue
9.
Arch Biochem Biophys ; 588: 25-32, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26541319

RESUMO

Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.


Assuntos
Sistema Biliar/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado/metabolismo , Animais , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfolipídeos/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1130-43, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25277800

RESUMO

On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3ß-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bile/metabolismo , Proteínas de Transporte/fisiologia , HDL-Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/fisiologia , Animais , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeos/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 307(2): G164-76, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24875102

RESUMO

Although human liver fatty acid-binding protein (FABP1) T94A variant has been associated with nonalcoholic fatty liver disease and reduced ability of fenofibrate to lower serum triglycerides (TG) to target levels, molecular events leading to this phenotype are poorly understood. Cultured primary hepatocytes from female human subjects expressing the FABP1 T94A variant exhibited increased neutral lipid (TG, cholesteryl ester) accumulation associated with (1) upregulation of total FABP1, a key protein stimulating mitochondrial glycerol-3-phosphate acyltransferase (GPAM), the rate-limiting enzyme in lipogenesis; (2) increased mRNA expression of key enzymes in lipogenesis (GPAM, LPIN2) in heterozygotes; (3) decreased mRNA expression of microsomal triglyceride transfer protein; (4) increased secretion of ApoB100 but not TG; (5) decreased long-chain fatty acid (LCFA) ß-oxidation. TG accumulation was not due to any increase in LCFA uptake, de novo lipogenesis, or the alternate monoacylglycerol O-acyltransferase pathway in lipogenesis. Despite increased expression of total FABP1 mRNA and protein, fenofibrate-mediated FABP1 redistribution to nuclei and ligand-induced peroxisome proliferator-activated receptor (PPAR-α) transcription of LCFA ß-oxidative enzymes (carnitine palmitoyltransferase 1A, carnitine palmitoyltransferase 2, and acyl-coenzyme A oxidase 1, palmitoyl) were attenuated in FABP1 T94A hepatocytes. Although the phenotype of FABP1 T94A variant human hepatocytes exhibits some similarities to that of FABP1-null or PPAR-α-null hepatocytes and mice, expression of FABP1 T94A variant did not abolish or reduce ligand binding. Thus the FABP1 T94A variant represents an altered/reduced function mutation resulting in TG accumulation.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , PPAR alfa/metabolismo , Apolipoproteína B-100/metabolismo , Células Cultivadas , Ésteres do Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Fenofibrato/farmacologia , Regulação Enzimológica da Expressão Gênica , Variação Genética , Hepatócitos/efeitos dos fármacos , Heterozigoto , Homozigoto , Humanos , Hipolipemiantes/farmacologia , Lipogênese/genética , Pessoa de Meia-Idade , Oxirredução , PPAR alfa/agonistas , Fenótipo , Ligação Proteica , Transporte Proteico , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/metabolismo
12.
Biochemistry ; 52(51): 9347-57, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24299557

RESUMO

Although the human liver fatty acid binding protein (L-FABP) T94A variant arises from the most commonly occurring single-nucleotide polymorphism in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in the complete loss of ligand binding ability and function analogous to that seen with L-FABP gene ablation. This possibility was addressed using the recombinant human wild-type (WT) T94T and T94A variant L-FABP and cultured primary human hepatocytes. Nonconservative replacement of the medium-sized, polar, uncharged T residue with a smaller, nonpolar, aliphatic A residue at position 94 of the human L-FABP significantly increased the L-FABP α-helical structure content at the expense of ß-sheet content and concomitantly decreased the thermal stability. T94A did not alter the binding affinities for peroxisome proliferator-activated receptor α (PPARα) agonist ligands (phytanic acid, fenofibrate, and fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on the human L-FABP secondary structure, the active metabolite fenofibric acid altered the T94A secondary structure much more than that of the WT T94T L-FABP. Finally, in cultured primary human hepatocytes, the T94A variant exhibited a significantly reduced extent of fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while the T94A substitution did not alter the affinity of the human L-FABP for PPARα agonist ligands, it significantly altered the human L-FABP structure, stability, and conformational and functional response to fibrate.


Assuntos
Proteínas de Ligação a Ácido Graxo/genética , Ácidos Fíbricos/farmacologia , Hipolipemiantes/farmacologia , Fígado/metabolismo , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Proteínas de Transporte de Ácido Graxo/agonistas , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/agonistas , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Fenofibrato/análogos & derivados , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Ácidos Fíbricos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Humanos , Hipolipemiantes/metabolismo , Ligantes , Fígado/citologia , Camundongos , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Fitânico/metabolismo , Ácido Fitânico/farmacologia , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Soil Environ Health ; 1(2)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37830053

RESUMO

The use of nanoparticles in agrichemical formula and food products as additives has increased their chances of accumulation in humans via oral intake. Due to their potential toxicity, it is critical to understand their fate and distribution following oral intake. Cerium oxide nanoparticle (CeO2NP) is commonly used in agriculture and is highly stable in the environment. As such, it has been used as a model chemical to investigate nanoparticle's distribution and clearance. Based on their estimated human exposure levels, 0.15-0.75 mg/kg body weight/day of CeO2NPs with different sizes and surface charges (30-50 nm with negative charge and <25 nm with positive charge) were gavaged into C57BL/6 female mice daily. After 10-d, 50% of mice in each treatment were terminated, with the remaining being gavaged with 0.2 mL of deionized water daily for 7-d. Mouse organ tissues, blood, feces, and urine were collected at termination. At the tested levels, CeO2NPs displayed minimal overt toxicity to the mice, with their accumulation in various organs being negligible. Fecal discharge as the predominant clearance pathway took less than 7-d regardless of charges. Single particle inductively coupled plasma mass spectrometry analysis demonstrated minimal aggregation of CeO2NPs in the gastrointestinal tract. These findings suggest that nanoparticle additives >25 nm are unlikely to accumulate in mouse organ after oral intake, indicating limited impacts on human health.

14.
Behav Brain Res ; 440: 114256, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36528169

RESUMO

The aryl hydrocarbon receptor (AhR) is a key regulator in the microbiome-gut-brain axis, and AhR-active microbial metabolites modulate multiple neuronal responses. We recently demonstrated that 3,3'-diindolylmethane (DIM) and 1,4-dihydroxy-2-naphthoic acid (DHNA), two selective AhR modulators (SAhRMs), act as antidepressants in female mice. Thus, to examine the role of intestinal AhR in depression, anxiety, and spatial learning, this study employed transgenic mice in which the AhR was knockout only in the intestinal epithelium (AhRΔIEC). Additionally, this study examined whether the antidepressant effects of dietary DIM and DHNA is mediated by intestinal AhR. AhRΔIEC and WT female mice were fed daily with vehicle, 20 mg/kg DIM or DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for weight gain, anhedonia-like behavior (sucrose preference test), anxiety levels (open field, light/dark, elevated plus maze, novelty-induced hypophagia, and marble burying tests), and spatial learning (Morris water maze). UCMS reduced weight gain in AhRΔIECs, but not WTs. Moreover, UCMS initially reduced sucrose preference in both AhRΔIECs and WTs, but over 4 weeks of UCMS, AhRΔIECs develop resilience to UCMS-induced anhedonia. Additionally, AhRΔIECs exhibit slightly reduced anxiety in certain tests and faster spatial learning. DIM and DHNA acted as antidepressants in both AhRΔIECs and WTs. Thus, this study suggests that intestinal AhR plays differential roles, mitigating stress effects on weight gain, and increasing stress effects on mood. However, the site of antidepressant action of SAhRMs, such as DIM and DHNA, is not dependent on the expression of intestinal AhR.


Assuntos
Depressão , Receptores de Hidrocarboneto Arílico , Animais , Feminino , Camundongos , Anedonia , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Camundongos Transgênicos , Sacarose , Aumento de Peso
15.
Nat Commun ; 14(1): 4342, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468468

RESUMO

Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese/genética , Membrana Celular/metabolismo , Colo/metabolismo , Drosophila/metabolismo , Via de Sinalização Wnt/genética
16.
J Lipid Res ; 53(3): 467-480, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223861

RESUMO

Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.


Assuntos
Membrana Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Western Blotting , Membrana Celular/genética , Células Cultivadas , Colesterol/genética , Colesterol/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Microdomínios da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Fosfolipídeos/química , Fosfolipídeos/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 302(8): G824-39, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22241858

RESUMO

A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3ß-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.


Assuntos
Proteínas de Transporte/metabolismo , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Hepatócitos/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Western Blotting , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Membrana Celular/química , Membrana Celular/metabolismo , Separação Celular , Células Cultivadas , Colesterol/análogos & derivados , Colesterol/farmacologia , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Imuno-Histoquímica , Lipoproteínas/biossíntese , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Imunoeletrônica
18.
Am J Physiol Gastrointest Liver Physiol ; 303(7): G837-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22859366

RESUMO

The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Hepatócitos/fisiologia , Ácidos Esteáricos/metabolismo , Animais , Transporte Biológico/fisiologia , Western Blotting , Células Cultivadas , Glucose/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Regulação para Cima/fisiologia
19.
Mol Nutr Food Res ; 65(20): e2100539, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34406707

RESUMO

SCOPE: This study investigates the mechanism of action and functional effects of coffee extracts in colonic cells, on intestinal stem cell growth, and inhibition of dextran sodium sulfate (DSS)-induced intestinal barrier damage in mice. METHODS AND RESULTS: Aqueous coffee extracts induced Ah receptor (AhR) -responsive CYP1A1, CYP1B1, and UGT1A1 gene expression in colon-derived Caco2 and YAMC cells. Tissue-specific AhR knockout (AhRf/f x Lgr5-GFP-CreERT2 x Villin-Cre), wild-type (Lgr5-CreERT2 x Villin-Cre) mice are sources of stem cell enriched organoids and both coffee extracts and norharman, an AhR-active component of these extracts inhibited stem cell growth. Coffee extracts also inhibit DSS-induced damage to intestinal barrier function and DSS-induced mucosal inflammatory genes such as IL-6 and TGF-ß1 in wild-type (AhR+/+ ) but not AhR-/- mice. In contrast, coffee does not exhibit protective effects in intestinal-specific AhR knockout mice. Coffee extracts also enhanced overall formation of AhR-active microbial metabolites. CONCLUSIONS: In colon-derived cells and in the mouse intestine, coffee induced several AhR-dependent responses including gene expression, inhibition of intestinal stem cell-enriched organoid growth, and inhibition of DSS-induced intestinal barrier damage. We conclude that the anti-inflammatory effects of coffee in the intestine are due, in part, to activation of AhR signaling.


Assuntos
Café , Colo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Células CACO-2 , Colo/metabolismo , Citocromo P-450 CYP1A1/fisiologia , Citocromo P-450 CYP1B1/fisiologia , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Masculino , Camundongos
20.
Am J Physiol Gastrointest Liver Physiol ; 299(1): G244-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20395534

RESUMO

Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol), which is poorly esterified, and [(3)H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux was affected by the type of lipoprotein acceptor, i.e., HDL3 over HDL2; 2) NBD-cholesterol efflux was rapid (detected in 1-2 min) and resolved into fast [half time (t((1/2))) = 2.4 min, 6% of total] and slow (t((1/2)) = 26.5 min, 94% of total) pools, consistent with protein- and vesicle-mediated cholesterol transfer, respectively; 3) SCP-2 gene ablation increased efflux of NBD-cholesterol, as well as [(3)H]cholesterol, albeit less so due to competition by esterification of [(3)H]cholesterol, but not NBD-cholesterol; and 4) SCP-2 gene ablation increased initial rate (2.3-fold) and size (9.7-fold) of rapid effluxing sterol, suggesting an increased contribution of molecular cholesterol transfer. In addition, colocalization, double-immunolabeling fluorescence resonance energy transfer, and electron microscopy, as well as cross-linking coimmunoprecipitation, indicated that SCP-2 directly interacted with the HDL receptor, scavenger receptor class B type 1 (SRB1), in hepatocytes. Other membrane proteins in cholesterol efflux [SRB1 and ATP-binding cassettes (ABC) A-1, ABCG-1, ABCG-5, and ABCG-8] and several soluble/vesicle-associated proteins facilitating intracellular cholesterol trafficking (StARDs, NPCs, ORPs) were not upregulated. However, loss of SCP-2 elicited twofold upregulation of liver fatty acid-binding protein (L-FABP), a protein with lower affinity for cholesterol but higher cytosolic concentration than SCP-2. Ablation of SCP-2 and L-FABP decreased HDL-mediated NBD-cholesterol efflux. These results indicate that SCP-2 expression plays a significant role in HDL-mediated cholesterol efflux by regulating the size of rapid vs. slow cholesterol efflux pools and/or eliciting concomitant upregulation of L-FABP in cultured primary hepatocytes.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Proteínas de Transporte/metabolismo , Colesterol/análogos & derivados , Hepatócitos/metabolismo , Lipoproteínas HDL3/metabolismo , 4-Cloro-7-nitrobenzofurazano/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/genética , Técnicas de Cultura de Células , Células Cultivadas , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Transferência Ressonante de Energia de Fluorescência , Técnicas de Inativação de Genes , Imunoprecipitação , Cinética , Lipoproteínas HDL2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Fosfoproteínas/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa