Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D29-D38, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370100

RESUMO

The National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases. New resources include the Comparative Genome Resource (CGR) and the BLAST ClusteredNR database. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, IgBLAST, GDV, RefSeq, NCBI Virus, GenBank type assemblies, iCn3D, ClinVar, GTR, dbGaP, ALFA, ClinicalTrials.gov, Pathogen Detection, antimicrobial resistance resources, and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Estados Unidos , National Library of Medicine (U.S.) , Alinhamento de Sequência , Biotecnologia , Internet
2.
Nucleic Acids Res ; 48(D1): D835-D844, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31777943

RESUMO

ClinVar is a freely available, public archive of human genetic variants and interpretations of their relationships to diseases and other conditions, maintained at the National Institutes of Health (NIH). Submitted interpretations of variants are aggregated and made available on the ClinVar website (https://www.ncbi.nlm.nih.gov/clinvar/), and as downloadable files via FTP and through programmatic tools such as NCBI's E-utilities. The default view on the ClinVar website, the Variation page, was recently redesigned. The new layout includes several new sections that make it easier to find submitted data as well as summary data such as all diseases and citations reported for the variant. The new design also better represents more complex data such as haplotypes and genotypes, as well as variants that are in ClinVar as part of a haplotype or genotype but have no interpretation for the single variant. ClinVar's variant-centric XML had its production release in April 2019. The ClinVar website and E-utilities both have been updated to support the VCV (variation in ClinVar) accession numbers found in the variant-centric XML file. ClinVar's search engine has been fine-tuned for improved retrieval of search results.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética/genética , Genoma Humano , Genômica , Haplótipos , Humanos , Internet , National Library of Medicine (U.S.) , Ferramenta de Busca , Estados Unidos
3.
Nucleic Acids Res ; 46(D1): D1062-D1067, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29165669

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.


Assuntos
Bases de Dados de Ácidos Nucleicos , Doença/genética , Variação Genética , Humanos , Fenótipo
4.
Hum Mutat ; 39(11): 1623-1630, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311387

RESUMO

The increasing application of genetic testing for determining the causes underlying Mendelian, pharmacogenetic, and somatic phenotypes has accelerated the discovery of novel variants by clinical genetics laboratories, resulting in a critical need for interpreting the significance of these variants and presenting considerable challenges. Launched in 2013 at the National Center for Biotechnology Information, National Institutes of Health, ClinVar is a public database for clinical laboratories, researchers, expert panels, and others to share their interpretations of variants with their evidence. The database holds 600,000 submitted records from 1,000 submitters, representing 430,000 unique variants. ClinVar encourages submissions of variants reviewed by expert panels, as expert consensus confers a high standard. Aggregating data from many groups in a single database allows comparison of interpretations, providing transparency into the concordance or discordance of interpretations. In its first five years, ClinVar has successfully provided a gateway for the submission of medically relevant variants and interpretations of their significance to disease. It has become an invaluable resource for the clinical genetics community seeking guidance from consensus interpretations. Building on the platform of providing transparency and leveraging aggregation of variant interpretations, ClinVar is now well positioned to help the clinical genetics community improve interpretations.


Assuntos
Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Bases de Dados Genéticas , Genômica , Humanos
5.
Hum Mutat ; 39(11): 1668-1676, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311371

RESUMO

GenomeConnect, the NIH-funded Clinical Genome Resource (ClinGen) patient registry, engages patients in data sharing to support the goal of creating a genomic knowledge base to inform clinical care and research. Participant self-reported health information and genomic variants from genetic testing reports are curated and shared with public databases, such as ClinVar. There are four primary benefits of GenomeConnect: (1) sharing novel genomic data-47.9% of variants were new to ClinVar, highlighting patients as a genomic data source; (2) contributing additional phenotypic information-of the 52.1% of variants already in ClinVar, GenomeConnect provided enhanced case-level data; (3) providing a way for patients to receive variant classification updates if the reporting laboratory submits to ClinVar-97.3% of responding participants opted to receive such information and 13 updates have been identified; and (4) supporting connections with others, including other participants, clinicians, and researchers to enable the exchange of information and support-60.4% of participants have opted to partake in participant matching. Moving forward, ClinGen plans to increase patient-centric data sharing by partnering with other existing patient groups. By engaging patients, more information is contributed to the public knowledge base, benefiting both patients and the genomics community.


Assuntos
Genoma Humano/genética , Genômica/métodos , Disseminação de Informação/métodos , Bases de Dados Genéticas , Testes Genéticos/métodos , Variação Genética , Humanos
6.
N Engl J Med ; 372(23): 2235-42, 2015 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-26014595

RESUMO

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient's family pursues genetic testing that shows a "likely pathogenic" variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as "likely benign" by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Variação Genética , Genoma Humano , Testes Genéticos , Humanos , National Library of Medicine (U.S.) , Estados Unidos
7.
Nucleic Acids Res ; 44(D1): D862-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26582918

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) at the National Center for Biotechnology Information (NCBI) is a freely available archive for interpretations of clinical significance of variants for reported conditions. The database includes germline and somatic variants of any size, type or genomic location. Interpretations are submitted by clinical testing laboratories, research laboratories, locus-specific databases, OMIM®, GeneReviews™, UniProt, expert panels and practice guidelines. In NCBI's Variation submission portal, submitters upload batch submissions or use the Submission Wizard for single submissions. Each submitted interpretation is assigned an accession number prefixed with SCV. ClinVar staff review validation reports with data types such as HGVS (Human Genome Variation Society) expressions; however, clinical significance is reported directly from submitters. Interpretations are aggregated by variant-condition combination and assigned an accession number prefixed with RCV. Clinical significance is calculated for the aggregate record, indicating consensus or conflict in the submitted interpretations. ClinVar uses data standards, such as HGVS nomenclature for variants and MedGen identifiers for conditions. The data are available on the web as variant-specific views; the entire data set can be downloaded via ftp. Programmatic access for ClinVar records is available through NCBI's E-utilities. Future development includes providing a variant-centric XML archive and a web page for details of SCV submissions.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética , Genes , Genoma Humano , Humanos
8.
Nucleic Acids Res ; 44(D1): D733-45, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26553804

RESUMO

The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Bovinos , Perfilação da Expressão Gênica , Genoma Fúngico , Genoma Humano , Genoma Microbiano , Genoma de Planta , Genoma Viral , Genômica/normas , Humanos , Invertebrados/genética , Camundongos , Anotação de Sequência Molecular , Nematoides/genética , Filogenia , RNA Longo não Codificante/genética , Ratos , Padrões de Referência , Análise de Sequência de Proteína , Análise de Sequência de RNA , Vertebrados/genética
9.
Hum Mutat ; 37(6): 549-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919176

RESUMO

Numerous databases containing information about DNA, RNA, and protein variations are available. Gene-specific variant databases (locus-specific variation databases, LSDBs) are typically curated and maintained for single genes or groups of genes for a certain disease(s). These databases are widely considered as the most reliable information source for a particular gene/protein/disease, but it should also be made clear they may have widely varying contents, infrastructure, and quality. Quality is very important to evaluate because these databases may affect health decision-making, research, and clinical practice. The Human Variome Project (HVP) established a Working Group for Variant Database Quality Assessment. The basic principle was to develop a simple system that nevertheless provides a good overview of the quality of a database. The HVP quality evaluation criteria that resulted are divided into four main components: data quality, technical quality, accessibility, and timeliness. This report elaborates on the developed quality criteria and how implementation of the quality scheme can be achieved. Examples are provided for the current status of the quality items in two different databases, BTKbase, an LSDB, and ClinVar, a central archive of submissions about variants and their clinical significance.


Assuntos
Bases de Dados Genéticas/normas , Variação Genética , Genoma Humano , Projeto Genoma Humano , Humanos , Controle de Qualidade
10.
Nucleic Acids Res ; 42(Database issue): D980-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24234437

RESUMO

ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) provides a freely available archive of reports of relationships among medically important variants and phenotypes. ClinVar accessions submissions reporting human variation, interpretations of the relationship of that variation to human health and the evidence supporting each interpretation. The database is tightly coupled with dbSNP and dbVar, which maintain information about the location of variation on human assemblies. ClinVar is also based on the phenotypic descriptions maintained in MedGen (http://www.ncbi.nlm.nih.gov/medgen). Each ClinVar record represents the submitter, the variation and the phenotype, i.e. the unit that is assigned an accession of the format SCV000000000.0. The submitter can update the submission at any time, in which case a new version is assigned. To facilitate evaluation of the medical importance of each variant, ClinVar aggregates submissions with the same variation/phenotype combination, adds value from other NCBI databases, assigns a distinct accession of the format RCV000000000.0 and reports if there are conflicting clinical interpretations. Data in ClinVar are available in multiple formats, including html, download as XML, VCF or tab-delimited subsets. Data from ClinVar are provided as annotation tracks on genomic RefSeqs and are used in tools such as Variation Reporter (http://www.ncbi.nlm.nih.gov/variation/tools/reporter), which reports what is known about variation based on user-supplied locations.


Assuntos
Bases de Dados Genéticas , Variação Genética , Fenótipo , Genoma Humano , Genômica , Humanos , Internet
11.
Nucleic Acids Res ; 42(Database issue): D756-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259432

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.nih.gov/refseq/). We report here on growth of the mammalian and human subsets, changes to NCBI's eukaryotic annotation pipeline and modifications affecting transcript and protein records. Recent changes to NCBI's eukaryotic genome annotation pipeline provide higher throughput, and the addition of RNAseq data to the pipeline results in a significant expansion of the number of transcripts and novel exons annotated on mammalian RefSeq genomes. Recent annotation changes include reporting supporting evidence for transcript records, modification of exon feature annotation and the addition of a structured report of gene and sequence attributes of biological interest. We also describe a revised protein annotation policy for alternatively spliced transcripts with more divergent predicted proteins and we summarize the current status of the RefSeqGene project.


Assuntos
Bases de Dados Genéticas , Genômica , Mamíferos/genética , Animais , Eucariotos/genética , Éxons , Genoma , Genômica/normas , Humanos , Internet , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética , RNA/química , Padrões de Referência
12.
Artigo em Inglês | MEDLINE | ID: mdl-29437798

RESUMO

Data sharing between laboratories, clinicians, researchers, and patients is essential for improvements and standardization in genomic medicine; encouraging genomic data sharing (GDS) is a key activity of the National Institutes of Health (NIH)-funded Clinical Genome Resource (ClinGen). The ClinGen initiative is dedicated to evaluating the clinical relevance of genes and variants for use in precision medicine and research. Currently, data originating from each of the aforementioned stakeholder groups is represented in ClinVar, a publicly available repository of genomic variation, and its relationship to human health hosted by the National Center for Biotechnology Information at the NIH. Although policies such as the 2014 NIH GDS policy are clear regarding the mandate for informed consent for broad data sharing from research participants, no clear guidance exists on the level of consent appropriate for the sharing of information obtained through clinical testing to advance knowledge. ClinGen has collaborated with ClinVar and the National Human Genome Research Institute to develop points to consider for clinical laboratories on sharing de-identified variant-level data in light of both the NIH GDS policy and the recent updates to the Common Rule. We propose specific data elements from interpreted genomic variants that are appropriate for submission to ClinVar when direct patient consent was not sought and describe situations in which obtaining informed consent is recommended.


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Disseminação de Informação , Mutação/genética , Genômica , Humanos , Consentimento Livre e Esclarecido
13.
Curr Protoc Hum Genet ; 89: 8.16.1-8.16.23, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037489

RESUMO

ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Humanos
14.
Genome Med ; 8(1): 117, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27814769

RESUMO

BACKGROUND: To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG) of the Clinical Genome Resource (ClinGen), in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD). MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice. METHODS: We developed MVLD through a consensus approach by i) reviewing clinical actionability interpretations from institutions participating in the WG, ii) conducting extensive literature search of clinical somatic interpretation schemas, and iii) survey of cancer variant web portals. A forthcoming guideline on cancer variant interpretation, from the Association of Molecular Pathology (AMP), can be incorporated into MVLD. RESULTS: Along with harmonizing standardized terminology for allele interpretive and descriptive fields that are collected by many databases, the MVLD includes unique fields for cancer variants such as Biomarker Class, Therapeutic Context and Effect. In addition, MVLD includes recommendations for controlled semantics and ontologies. The Somatic WG is collaborating with ClinVar to evaluate MVLD use for somatic variant submissions. ClinVar is an open and centralized repository where sequencing laboratories can report summary-level variant data with clinical significance, and ClinVar accepts cancer variant data. CONCLUSIONS: We expect the use of the MVLD to streamline clinical interpretation of cancer variants, enhance interoperability among multiple redundant curation efforts, and increase submission of somatic variants to ClinVar, all of which will enhance translation to clinical oncology practice.


Assuntos
Curadoria de Dados/normas , Variação Genética , Neoplasias/genética , Algoritmos , Bases de Dados Genéticas , Frequência do Gene , Humanos , Medicina de Precisão
15.
Genome Res ; 19(7): 1316-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19498102

RESUMO

Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.


Assuntos
Sequência Consenso , Genoma , Fases de Leitura Aberta/genética , Animais , Humanos , Camundongos , Alinhamento de Sequência
16.
Science ; 314(5801): 941-52, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17095691

RESUMO

We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.


Assuntos
Genoma , Análise de Sequência de DNA , Strongylocentrotus purpuratus/genética , Animais , Calcificação Fisiológica , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Ativação do Complemento/genética , Biologia Computacional , Desenvolvimento Embrionário/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes , Imunidade Inata/genética , Fatores Imunológicos/genética , Fatores Imunológicos/fisiologia , Masculino , Fenômenos Fisiológicos do Sistema Nervoso , Proteínas/genética , Proteínas/fisiologia , Transdução de Sinais , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa