Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cell Sci ; 133(18)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32843580

RESUMO

Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Edição de Genes , Células HeLa , Humanos , Mitocôndrias/genética , Reprodutibilidade dos Testes
2.
J Cell Sci ; 133(14)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513819

RESUMO

The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.


Assuntos
Autofagossomos , Endossomos , Nexinas de Classificação , Animais , Autofagossomos/metabolismo , Autofagia , Endossomos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
3.
FASEB J ; 35(11): e22002, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34708458

RESUMO

Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17 days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Condrócitos/citologia , Condrogênese , Articulações/embriologia , Peixe-Zebra/embriologia , Animais , Autofagia , Diferenciação Celular
4.
Histochem Cell Biol ; 154(5): 549-564, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32915267

RESUMO

In the last twenty years, research using zebrafish as a model organism has increased immensely. With the many advantages that zebrafish offer such as high fecundity, optical transparency, ex vivo development, and genetic tractability, they are well suited to studying developmental processes and the effect of genetic mutations. More recently, zebrafish models have been used to study autophagy. This important protein degradation pathway is needed for cell and tissue homeostasis in a variety of contexts. Correspondingly, its dysregulation has been implicated in multiple diseases including skeletal disorders. In this review, we explore how zebrafish are being used to study autophagy in the context of skeletal development and disease, and the ways these areas are intersecting to help identify potential therapeutic targets for skeletal disorders.


Assuntos
Autofagia , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Peixe-Zebra , Animais , Homeostase , Doenças Musculares/patologia
5.
Australas Psychiatry ; 28(3): 274-278, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32050776

RESUMO

OBJECTIVE: The objective of this study is to introduce The Royal Australian & New Zealand College of Psychiatrists (RANZCP) Military and Veterans' Mental Health Network (The Network) and profile its inaugural members. METHODS: We implemented an online survey of demographic, professional and practice characteristics of network members; self-rated knowledge of military and veterans' mental health; reasons for joining The Network; and suggestions as to how The Network could best support members' needs. Quantitative survey responses were analysed descriptively. Qualitative responses were analysed thematically. RESULTS: Thirty-two out of 60 network members returned the survey. The membership was predominately male and 50 years of age or older. One-half had completed their fellowship or specialty 20 or more years ago. A high level of self-rated knowledge with respect to the assessment and management of current and ex-serving military personnel was reported. Knowledge of the assessment and management of current and ex-serving emergency services personnel was lower. CONCLUSION: There are RANZCP members with an active interest, expertise and knowledge in the field of military, veterans' and emergency services personnel mental health; this affirms the significant role the RANZCP can play in this area. There is a need to expand, diversify and ensure sustainability of the workforce.


Assuntos
Redes Comunitárias/estatística & dados numéricos , Serviços de Saúde Mental/organização & administração , Militares/psicologia , Psiquiatria/estatística & dados numéricos , Veteranos/psicologia , Adulto , Idoso , Austrália , Redes Comunitárias/organização & administração , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nova Zelândia , Inquéritos e Questionários , Adulto Jovem
6.
EMBO J ; 32(13): 1903-16, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736261

RESUMO

The Wnt/ß-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/ß-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of ß-catenin expression levels in vitro and in vivo revealed that ß-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation ß-catenin is selectively degraded via the formation of a ß-catenin-LC3 complex, attenuating ß-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the ß-catenin-LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in ß-catenin, which is required for interaction with LC3 and non-proteasomal degradation of ß-catenin. Thus, Wnt/ß-catenin represses autophagy and p62 expression, while ß-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place ß-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias do Colo/patologia , Lisossomos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Sequestossoma-1 , Fator de Transcrição 4 , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/antagonistas & inibidores , beta Catenina/genética
7.
EMBO Rep ; 16(5): 618-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739811

RESUMO

Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Apoptose/genética , Biomimética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Resistência a Medicamentos , Expressão Gênica , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Fragmentos de Peptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Ubiquitina-Proteína Ligases/genética
8.
J Cell Sci ; 127(Pt 10): 2313-25, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24634514

RESUMO

Mitochondrial dynamics play crucial roles in mitophagy-based mitochondrial quality control, but how these pathways are regulated to meet cellular energy demands remains obscure. Using non-transformed human RPE1 cells, we report that upregulation of mitochondrial oxidative phosphorylation alters mitochondrial dynamics to inhibit Parkin-mediated mitophagy. Despite the basal mitophagy rates remaining stable upon the switch to dependence on oxidative phosphorylation, mitochondria resist fragmentation when RPE1 cells are treated with the protonophore carbonyl cyanide m-chlorophenyl hydrazone. Mechanistically, we show that this is because cleavage of the inner membrane fusion factor L-OPA1 is prevented due to the failure to activate the inner membrane protease OMA1 in mitochondria that have a collapsed membrane potential. In parallel, mitochondria that use oxidative phosphorylation are protected from damage-induced fission through the impaired recruitment and activation of mitochondrial DRP1. Using OMA1-deficient MEF cells, we show that the preservation of a stable pool of L-OPA1 at the inner mitochondrial membrane is sufficient to delay mitophagy, even in the presence of Parkin. The capacity of cells that are dependent on oxidative phosphorylation to maintain substantial mitochondrial content in the face of acute damage has important implications for mitochondrial quality control in vivo.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Dinaminas , GTP Fosfo-Hidrolases/genética , Humanos , Metaloendopeptidases/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Fosforilação Oxidativa
9.
Int J Mol Sci ; 16(6): 13356-80, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26110381

RESUMO

Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis.


Assuntos
Autofagia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/patologia , RNA Interferente Pequeno/genética , Receptores sigma/antagonistas & inibidores , Epitélio Pigmentado da Retina/metabolismo , Células Cultivadas , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Receptores sigma/genética , Epitélio Pigmentado da Retina/citologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Receptor Sigma-1
10.
Blood ; 119(26): 6296-306, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22490681

RESUMO

The erythrocyte is one of the best characterized human cells. However, studies of the process whereby human reticulocytes mature to erythrocytes have been hampered by the difficulty of obtaining sufficient numbers of cells for analysis. In the present study, we describe an in vitro culture system producing milliliter quantities of functional mature human adult reticulocytes from peripheral blood CD34(+) cells. We show that the final stage of reticulocyte maturation occurs by a previously undescribed mechanism in which large glycophorin A-containing vesicles forming at the cytosolic face of the plasma membrane are internalized and fuse with autophagosomes before expulsion of the autophagosomal contents by exocytosis. Early reticulocyte maturation is characterized by the selective elimination of unwanted plasma membrane proteins (CD71, CD98, and ß1 integrin) through the endosome-exosome pathway. In contrast, late maturation is characterized by the generation of large glycophorin A-decorated vesicles of autophagic origin.


Assuntos
Exocitose/fisiologia , Glicoforinas/metabolismo , Fusão de Membrana/fisiologia , Fagossomos/fisiologia , Reticulócitos/fisiologia , Vesículas Transportadoras/fisiologia , Adulto , Diferenciação Celular , Membrana Celular/metabolismo , Eritrócitos/fisiologia , Eritrócitos/ultraestrutura , Humanos , Microscopia Confocal , Oxigênio/metabolismo , Fagossomos/metabolismo , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura , Vesículas Transportadoras/metabolismo
11.
Womens Health (Lond) ; 20: 17455057241275441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238243

RESUMO

BACKGROUND: The military is a male-dominated environment and culture in which women veterans can experience significant institutional prejudice. Transition can be confusing and isolating for women veterans. Group programs are an important source of transition support. However, we know little about the specific group program needs of women veterans. OBJECTIVES: To examine mental health and well-being support group programs delivered to women veterans, to understand what they value and find most helpful. ELIGIBILITY CRITERIA: Women military veterans (all types); empirical studies using any design; published between 1990 and 2022; group programs focused on transition issues (such as housing, employment, education, physical health, mental health). SOURCES OF EVIDENCE: Peer-reviewed journals and theses. CHARTING METHODS: Six databases searched: Medline (via Ovid SP), PsycINFO (via Ovid SP), EmCare (via Ovid SP), CINAHL, Scopus, and ProQuest. RESULTS: There was significant heterogeneity across 35 included studies in type of groups, program content and structure, length of sessions, measurement of impact, follow-up, and so forth. Most programs were delivered face to face. Physical health and preventative healthcare were important topics for women veterans, particularly reproductive health, mental health, and chronic pain. Groups that included physical activity, creative arts, and alternative therapies were beneficial to women's physical and mental health. Strengths-based women-only groups, facilitated by women, that created safe spaces for women veterans to share their experiences, enhanced self-expression, agency, and self-empowerment. This was particularly important for women who had experience military sexual trauma. CONCLUSION: This review found a small but diverse range of group programs available for women veterans. Many program evaluations were of moderate or low quality and lacked sufficient information to determine whether benefits were sustained over time. No studies involved Australian women veterans. Despite these concerns, this review highlighted several useful lessons that could help inform improved design, delivery, and evaluation of group programs for women veterans.


Review of women veteran transition mental health and well-being support group programsWomen veterans learn to become soldiers, sailors and aviators in a male-dominated environment and culture in which their presence is highly visible, challenged and often subject to institutional prejudice. Transition can be confusing and isolating for women veterans. We know little about the specific needs of women veterans to support them to transition successfully to civilian life. Group programs are an important source of transition and post-transition support for veterans. The aim of this review was to examine the existing literature on mental health and well-being support group programs delivered to women veterans to understand what women veterans value and find most helpful in the design and delivery of such programs. Thirty-five studies were included in this review; 33 of these were conducted in the United States. They were of mixed quality and diverse design. Women only groups were favored. Strengths-based Programs that help to build emotional strengths, agency and empowered women were valued by them. Physical health and preventative healthcare are important topics for group programs for women veterans, as are creative arts and alternative therapies that facilitate self-expression and self-empowerment.


Assuntos
Saúde Mental , Veteranos , Humanos , Feminino , Veteranos/psicologia , Grupos de Autoajuda , Saúde da Mulher
12.
Exp Neurol ; 382: 114979, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357593

RESUMO

Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. They successfully differentiate and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.

13.
Resusc Plus ; 17: 100537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261942

RESUMO

Background: An out-of-hospital cardiac arrest requires early recognition, prompt and quality clinical interventions, and coordination between different clinicians to improve outcomes. Clinical team leaders and clinical teams have high levels of cognitive burden. We aimed to investigate the effect of a dedicated Cardio-Pulmonary Resuscitation (CPR) Quality Officer role on team performance. Methods: This multi-centre randomised control trial used simulation in universities from the UK, Poland, and Norway. Student Paramedics participated in out-of-hospital cardiac arrest scenarios before randomisation to either traditional roles or assigning one member as the CPR Quality Officer. The quality of CPR was measured using QCPR® and Advanced Life Support (ALS) elements were evaluated. Results: In total, 36 teams (108 individuals) participated. CPR quality from the first attempt (72.45%, 95% confidence interval [CI] 64.94 to 79.97) significantly increased after addition of the CPR Quality role (81.14%, 95% CI 74.20 to 88.07, p = 0.045). Improvement was not seen in the control group. The time to first defibrillation had no significant difference in the intervention group between the first attempt (53.77, 95% CI 36.57-70.98) and the second attempt (48.68, 95% CI 31.31-66.05, p = 0.84). The time to manage an obstructive airway in the intervention group showed significant difference (p = 0.006) in the first attempt (168.95, 95% CI 110.54-227.37) compared with the second attempt (136.95, 95% CI 87.03-186.88, p = 0.1). Conclusion: A dedicated CPR Quality Officer in simulated scenarios improved the quality of CPR compressions without a negative impact on time to first defibrillation, managing the airway, or adherence to local ALS protocols.

14.
Autophagy ; : 1-3, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37312406

RESUMO

Parkinson disease (PD) is caused by the loss of ventral midbrain dopaminergic neurons (mDANs) in the substantia nigra pars compacta (SNpc). These cells are especially vulnerable to stress but can be protected by autophagy enhancement strategies in vitro and in vivo. In our recent study, we focused on the LIM (Lin11, Isl-1, and Mec-3)-domain homeobox transcription factors LMX1A (LIM homeobox transcription factor 1 alpha) and LMX1B (LIM homeobox transcription factor 1 beta), crucial drivers of mDAN differentiation with roles in autophagy gene expression for stress protection in the developed brain. Using human induced pluripotent stem cell (hiPSC)-derived mDANs and transformed human cell lines, we found that these autophagy gene transcription factors are themselves regulated by autophagy-mediated turnover. LMX1B possesses a non-canonical LC3-interacting region (LIR) in its C-terminus through which it interacts with ATG8 family members. The LMX1B LIR-like domain enables binding to ATG8 proteins in the nucleus, where ATG8 proteins act as co-factors for robust transcription of LMX1B target genes. Thus, we propose a novel role for ATG8 proteins as autophagy gene transcriptional co-factors for mDAN stress protection in PD.

15.
Brain Commun ; 5(2): fcad114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124945

RESUMO

This scientific commentary refers to 'Human stem cell-derived astrocytes exhibit region-specific heterogeneity in their secretory profiles', by Clarke et al. (https://doi.org/10.1093/brain/awaa258) in Brain.

16.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014324

RESUMO

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro. Significantly, we show that LMX1A and LMX1B stability is in part regulated by autophagy, and that these transcription factors bind to multiple ATG8 proteins. Binding is dependent on subcellular localization and nutrient status, with LMX1B interacting with LC3B in the nucleus under basal conditions and associating with both cytosolic and nuclear LC3B during nutrient starvation. Crucially, ATG8 binding stimulates LMX1B-mediated transcription for efficient autophagy and cell stress protection, thereby establishing a novel LMX1B-autophagy regulatory axis that contributes to mDAN maintenance and survival in the adult brain.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Proteínas com Homeodomínio LIM , Mesencéfalo , Neurônios , Fatores de Transcrição , Humanos , Autofagia , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Neurônios/citologia
17.
Autophagy Rep ; 1(1): 88-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449600

RESUMO

Autophagosome formation involves the sequential actions of conserved ATG proteins to coordinate the lipidation of the ubiquitin-like modifier Atg8-family proteins at the nascent phagophore membrane. Although the molecular steps driving this process are well understood, the source of membranes for the expanding phagophore and their mode of delivery are only now beginning to be revealed. Here, we have used quantitative SILAC-based proteomics to identify proteins that associate with the ATG12-ATG5 conjugate, a crucial player during Atg8-family protein lipidation. Our datasets reveal a strong enrichment of regulators of clathrin-mediated vesicular trafficking, including clathrin heavy and light chains, and several clathrin adaptors. Also identified were PIK3C2A (a phosphoinositide 3-kinase involved in clathrin-mediated endocytosis) and HIP1R (a component of clathrin vesicles), and the absence of either of these proteins alters autophagic flux in cell-based starvation assays. To determine whether the ATG12-ATG5 conjugate reciprocally influences trafficking within the endocytic compartment, we captured the cell surface proteomes of autophagy-competent and autophagy-incompetent mouse embryonic fibroblasts under fed and starved conditions. We report changes in the relative proportions of individual cell surface proteins and show that cell surface levels of the SLC7A5-SLC3A2 amino acid transporter are influenced by autophagy capability. Our data provide evidence for direct regulatory coupling between the ATG12-ATG5 conjugate and the clathrin membrane trafficking system and suggest candidate membrane proteins whose trafficking within the cell may be modulated by the autophagy machinery. Abbreviations: ATG, autophagy related; BafA1, bafilomycin A1; GFP, green fluorescent protein; HIP1R, huntingtin interacting protein 1 related; MEF, mouse embryo fibroblast; PIK3C2A, phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha; SILAC, stable isotope labelling with amino acids in culture; SQSTM1, sequestosome 1; STRING, search tool for the retrieval of interacting genes/proteins.

18.
Trends Cell Biol ; 16(7): 330-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16765597

RESUMO

A cell entering the execution phase of apoptosis (regulated cell death) undergoes characteristic rearrangements, in which the cytoskeleton has major roles. Historically, this reorganisation has been attributed entirely to actomyosin contractility, with microtubule and intermediate filament systems both reported to be lost at an early stage. However, recent results indicate that microtubule networks re-form during the later stages of apoptosis and assist in the dispersal of nuclear and cellular fragments--steps that are thought to be important for preventing inflammation. Here, we discuss the roles of the cytoskeleton during apoptosis and challenge current thinking that actin is the sole functional component driving all major execution phase events.


Assuntos
Apoptose/fisiologia , Microtúbulos/fisiologia , Actinas/fisiologia , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Inflamação , Miosinas/fisiologia , Transdução de Sinais
19.
J Vis Exp ; (176)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661566

RESUMO

In Parkinson's disease, progressive dysfunction and degeneration of dopamine neurons in the ventral midbrain cause life-changing symptoms. Neuronal degeneration has diverse causes in Parkinson's, including non-cell autonomous mechanisms mediated by astrocytes. Throughout the CNS, astrocytes are essential for neuronal survival and function, as they maintain metabolic homeostasis in the neural environment. Astrocytes interact with the immune cells of the CNS, microglia, to modulate neuroinflammation, which is observed from the earliest stages of Parkinson's, and has a direct impact on the progression of its pathology. In diseases with a chronic neuroinflammatory element, including Parkinson's, astrocytes acquire a neurotoxic phenotype, and thus enhance neurodegeneration. Consequently, astrocytes are a potential therapeutic target to slow or halt disease, but this will require a deeper understanding of their properties and roles in Parkinson's. Accurate models of human ventral midbrain astrocytes for in vitro study are therefore urgently required. We have developed a protocol to generate high purity cultures of ventral midbrain-specific astrocytes (vmAstros) from hiPSCs that can be used for Parkinson's research. vmAstros can be routinely produced from multiple hiPSC lines, and express specific astrocytic and ventral midbrain markers. This protocol is scalable, and thus suitable for high-throughput applications, including for drug screening. Crucially, the hiPSC derived-vmAstros demonstrate immunomodulatory characteristics typical of their in vivo counterparts, enabling mechanistic studies of neuroinflammatory signaling in Parkinson's.


Assuntos
Células-Tronco Pluripotentes Induzidas , Astrócitos , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Microglia
20.
Autophagy ; 17(4): 855-871, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286126

RESUMO

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Assuntos
Autofagia , Técnicas de Cultura de Células , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mitofagia , Autofagia/efeitos dos fármacos , Autofagia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Piridinas/farmacologia , Pirimidinas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa