Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 87: 102-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26268593

RESUMO

The heart is characterized by a remarkable degree of heterogeneity, the basis of which is a subject of active investigation. Myofilament protein post-translational modifications (PTMs) represent a critical mechanism regulating cardiac contractility, and emerging evidence shows that pathological cardiac conditions induce contractile heterogeneity that correlates with transmural variations in the modification status of myofilament proteins. Nevertheless, whether there exists basal heterogeneity in myofilament protein PTMs in the heart remains unclear. Here we have systematically assessed chamber-specific and transmural variations in myofilament protein PTMs, specifically, the phosphorylation of cardiac troponin I (cTnI), cardiac troponin T (cTnT), tropomyosin (Tpm), and myosin light chain 2 (MLC2). We show that the phosphorylation of cTnI and αTm vary in the different chambers of the heart, whereas the phosphorylation of MLC2 and cTnT does not. In contrast, no significant transmural differences were observed in the phosphorylation of any of the myofilament proteins analyzed. These results highlight the importance of appropriate tissue sampling-particularly for studies aimed at elucidating disease mechanisms and biomarker discovery-in order to minimize potential variations arising from basal heterogeneity in myofilament PTMs in the heart.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/metabolismo , Tropomiosina/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Espectrometria de Massas , Fosforilação , Processamento de Proteína Pós-Traducional , Suínos
2.
Anal Chem ; 87(16): 8399-8406, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26189812

RESUMO

Actin is the major component of the cytoskeleton, playing an essential role in the structure and motility of both muscle and nonmuscle cells. It is highly conserved and encoded by a multigene family. α-Cardiac actin (αCAA) and α-skeletal actin (αSKA), encoded by two different genes, are the primary actin isoforms expressed in striated muscles. The relative expression levels of αSKA and αCAA have been shown to vary between species and under pathological conditions. In particular, an increased αSKA expression is believed to be a programmed response of a diseased heart. Therefore, it is essential to quantify the relative expression of αSKA and αCAA, which remains challenging due to the high degree of sequence similarity between these isoforms (98.9%). Herein, we developed a top-down liquid chromatography/mass spectrometry-based ("LC/MS+") method for the rapid purification and comprehensive analysis of α-actin extracted from muscle tissues. We thoroughly investigated all of the actin isoforms in healthy human cardiac and skeletal muscles. We found that αSKA is the only isoform expressed in skeletal muscle, whereas αCAA and αSKA are coexpressed in cardiac muscle. We then applied our method to quantify the α-actin isoforms in human healthy hearts and failing hearts with dilated cardiomyopathy (DCM). We found that αSKA is augmented in DCM compared with healthy controls, 43.1 ± 0.9% versus 23.7 ± 1.7%, respectively. As demonstrated, top-down LC/MS+ provides an effective and comprehensive method for the purification, quantification, and characterization of α-actin isoforms, enabling assessment of their clinical potential as cardiac disease markers.


Assuntos
Actinas/sangue , Biomarcadores/sangue , Cromatografia Líquida , Cardiopatias/sangue , Espectrometria de Massas , Isoformas de Proteínas/sangue , Actinas/química , Humanos , Miocárdio/química , Miocárdio/patologia , Padrões de Referência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa