Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(42): 16822-16830, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36205420

RESUMO

Complex oxides that adopt the isometric spinel structure (AB2O4) are important for numerous technological applications and are relevant for certain geological processes, which involve exposure to extreme environments such as high pressures and temperatures. Recent studies have shown that the changes to the spinel structure caused by these environments are complex and depend on the material length scale under consideration. In this study, we have expanded this approach to the behavior of spinels under high temperatures. In situ neutron total scattering experiments, coupled with pair distribution function analysis, performed on two spinel compositions with various levels of pre-existing disorder (MgAl2O4 and NiAl2O4) revealed that both compositions trend to a state of maximum disorder where the A and B cations are randomly distributed among the two available sites. Temperature-induced cation inversion, conventionally understood as an exchange of cations on the A and B sites, is locally expressed as an atomic rearrangement to a tetragonal symmetry, a correlation that is retained up to the maximum temperature studied (1000 °C). A complex thermal expansion behavior is revealed wherein the oxide materials expand heterogeneously at the level of coordination polyhedra with an apparent dependence on bond strength.

2.
Inorg Chem ; 57(19): 12093-12105, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198710

RESUMO

Depending on intrinsic (e.g., radius ratio rule rLn/ rZr) and extrinsic factors (e.g., processing conditions), pyrochlore-type Ln2Zr2O7 oxides achieve variable degrees of structural disorder. We report on a systematic study of the structural and microstructural characteristics of the Gd2- xLn xZr2O7 system, exploring the effect of replacing Gd with a wide range of homovalent lanthanide ions (Ln = Nd, Sm, Dy, Ho, Y, and Er; x = 0.20 and 0.80). All compositions were prepared via a mechanochemical reaction between the corresponding oxides and characterized by X-ray diffraction (standard and synchrotron sources) using the Rietveld method, as well as by Raman spectroscopy. Irrespective of chemical composition, this study reveals that all compositions exhibit a fluorite-like structure. Furthermore, by firing each sample at 800 and 1400 °C, we are able to analyze the transition to pyrochlore-like structures, featuring different degrees of disorder, in all but Gd1.20Y0.80Zr2O7, which retains the fluorite structure even after heating. The structural data are used to assess the existing criteria for predicting the formation and stability of the pyrochlore structure; according to this analysis, the simple radius ratio rule ( rLn/ rZr), provides a useful and sufficiently robust criterion. Because the pyrochlore structure has a strong tendency to disorder, it is not possible to define an empirical index similar to the Goldschmidt tolerance factor for perovskite.

3.
Inorg Chem ; 57(4): 2269-2277, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29420026

RESUMO

The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal, and cubic), respectively. All samples undergo irreversible high-pressure phase transformations, but with different onset pressures depending on the initial structure. While each individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ∼21 GPa, followed by Im3̅m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (∼55 GPa) reached, indicating kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high-pressure cubic X-type phase (Im3̅m) is confirmed using high-resolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

4.
Phys Chem Chem Phys ; 20(9): 6187-6197, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431823

RESUMO

The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln2Zr2O7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm2Zr2O7 and Nd2Zr2O7. For irradiated Er2Zr2O7, which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

5.
J Am Chem Soc ; 139(30): 10395-10402, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28683545

RESUMO

A wide variety of compositions adopt the isometric spinel structure (AB2O4), in which the atomic-scale ordering is conventionally described according to only three structural degrees of freedom. One, the inversion parameter, is traditionally defined as the degree of cation exchange between the A- and B-sites. This exchange, a measure of intrinsic disorder, is fundamental to understanding the variation in the physical properties of different spinel compositions. Based on neutron total scattering experiments, we have determined that the local structure of Mg1-xNixAl2O4 spinel cannot be understood as simply being due to cation disorder. Rather, cation inversion creates a local tetragonal symmetry that extends over sub-nanometer domains. Consequently, the simple spinel structure is more complicated than previously thought, as more than three parameters are needed to fully describe the structure. This new insight provides a framework by which the behavior of spinel can be more accurately modeled under the extreme environments important for many geophysics and energy-related applications, including prediction of deep seismic activity and immobilization of nuclear waste in oxides.

6.
Nat Mater ; 15(5): 507-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928636

RESUMO

There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.


Assuntos
Modelos Químicos , Técnicas de Sonda Molecular , Difração de Nêutrons/métodos , Nióbio/química , Óxidos/química , Estereoisomerismo
7.
Inorg Chem ; 55(7): 3541-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26974702

RESUMO

Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray amorphous reactive form of uranium oxide that may have contributed to the pressurization. Heating hydrated uranyl peroxides produced during in situ mining can produce an amorphous compound, as shown by X-ray powder diffraction of material from impacted drums. Subsequently, studtite, [(UO2)(O2)(H2O)2](H2O)2, was heated in the laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide that reacts with water to release O2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U2O7 conformer consists of two bent (UO2)(2+) uranyl ions bridged by a peroxide group bidentate and parallel to each uranyl ion, and a µ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model, as do (1)H- and (17)O-nuclear magnetic resonance spectra. The reactivity of U2O7 in water and with water in air is higher than that of other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.

8.
Phys Chem Chem Phys ; 14(35): 12295-300, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22858872

RESUMO

Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.


Assuntos
Ouro/química , Íons Pesados , Nanoestruturas/química , Urânio/química , Zircônio/química , Cristalização
9.
Front Chem ; 9: 733718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490214

RESUMO

Fluorite-structured oxides constitute an important class of materials for energy technologies. Despite their high level of structural symmetry and simplicity, these materials can accommodate atomic disorder without losing crystallinity, making them indispensable for uses in environments with high temperature, changing chemical compositions, or intense radiation fields. In this contribution, we present a set of simple rules that predict whether a compound may adopt a disordered fluorite structure. This approach is closely aligned with Pauling's rules for ionic crystal structures and Goldschmidt's rules for ionic substitution.

10.
Nat Mater ; 8(10): 793-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19734884

RESUMO

High-pressure and high-temperature phases show unusual physical and chemical properties, but they are often difficult to 'quench' to ambient conditions. Here, we present a new approach, using bombardment with very high-energy, heavy ions accelerated to relativistic velocities, to stabilize a high-pressure phase. In this case, Gd(2)Zr(2)O(7), pressurized in a diamond-anvil cell up to 40 GPa, was irradiated with 20 GeV xenon or 45 GeV uranium ions, and the (previously unquenchable) cubic high-pressure phase was recovered after release of pressure. Transmission electron microscopy revealed a radiation-induced, nanocrystalline texture. Quantum-mechanical calculations confirm that the surface energy at the nanoscale is the cause of the remarkable stabilization of the high-pressure phase. The combined use of high pressure and high-energy ion irradiation provides a new means for manipulating and stabilizing new materials to ambient conditions that otherwise could not be recovered.

11.
Sci Rep ; 10(1): 1367, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992739

RESUMO

Fission track thermochronology is routinely used to investigate the thermal history of sedimentary basins, as well as tectonic uplift and denudation rates. While the effect of temperature on fission track annealing has been studied extensively to calibrate the application of the technique, the effect of pressure during annealing is generally considered to be negligible. However, a previous study suggested elevated pressure results in a significantly different annealing behaviour that was previously unknown. Here, we present a method to study track annealing in situ under high pressure by using synchrotron-based small angle x-ray scattering (SAXS). To simulate fission tracks in a controlled environment, ion tracks were created in apatite from Durango, Mexico using 2 GeV Au or Bi ions provided by an ion accelerator facility. Samples were annealed at 250 °C at approximately 1 GPa pressure using diamond anvil cells (DACs) with heating capabilities. Additional in situ annealing experiments at ambient pressure and temperatures between 320 and 390 °C were performed for comparison. At elevated pressure a significantly accelerated annealing rate of the tracks was observed compared with annealing at ambient pressure. However, when extrapolated to geologically relevant temperatures and pressures, the effects become very small. The measurement methodology presented provides a new avenue to study materials behaviour in extreme environments.

12.
RSC Adv ; 10(57): 34632-34650, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35514412

RESUMO

Pyrochlore (A2B2O7) is an important, isometric structure-type because of its large variety of compositions and structural derivatives that are generally related to different disordering mechanisms at various spatial scales. The disordering is key to understanding variations in properties, such as magnetic behavior or ionic conduction. Neutron and X-ray total scattering methods were used to investigate the degree of structural disorder in the Ho2Ti2-x Zr x O7 (x = 0.0-2.0, Δx = 0.25) solid solution series as a function of the Zr-content, x. Ordered pyrochlores (Fd3̄m) disorder to defect fluorite (Fm3̄m) via cation and anion disordering. Total scattering experiments with sensitivity to the cation and anion sublattices provide unique insight into the underlying atomic processes. Using simultaneous Rietveld refinement (long-range structure) and small-box refinement PDF analysis (short-range structure), we show that the series undergoes a rapid transformation from pyrochlore to defect fluorite at x ≈ 1.2, while the short-range structure exhibits a linear increase in a local weberite-type phase, C2221, over the entire composition range. Enthalpies of formation from the oxides determined using high temperature oxide melt solution calorimetry support the structural data and provide insight into the effect of local ordering on the energetics of disorder. The measured enthalpies of mixing are negative and are fit by a regular solution parameter of W = -31.8 ± 3.7 kJ mol-1. However, the extensive short-range ordering determined from the structural analysis strongly suggests that the entropies of mixing must be far less positive than implied by the random mixing of a regular solution. We propose a local disordering scheme involving the pyrochlore 48f to 8a site oxygen Frenkel defect that creates 7-coordinated Zr sites contained within local weberite-type coherent nanodomains. Thus, the solid solution is best described as a mixture of two phases, with the weberite-type nanodomains triggering the long-range structural transformation to defect fluorite after accumulation above a critical concentration (50% Ti replaced by Zr).

13.
Sci Adv ; 6(35): eabc2758, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32923649

RESUMO

Disordered crystalline materials are used in a wide variety of energy-related technologies. Recent results from neutron total scattering experiments have shown that the atomic arrangements of many disordered crystalline materials are not random nor are they represented by the long-range structure observed from diffraction experiments. Despite the importance of disordered materials and the impact of disorder on the expression of physical properties, the underlying fundamental atomic-scale rules of disordering are not currently well understood. Here, we report that heterogeneous disordering (and associated structural distortions) can be understood by the straightforward application of Pauling's rules (1929). This insight, corroborated by first principles calculations, can be used to predict the short-range, atomic-scale changes that result from structural disordering induced by extreme conditions associated with energy-related applications, such as high temperature, high pressure, and intense radiation fields.

14.
J Synchrotron Radiat ; 16(Pt 6): 773-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19844013

RESUMO

Swift heavy-ion irradiations of a wide variety of materials have been used to modify and manipulate the properties of solids at the nanoscale. Recently, these high-energy irradiations have been successfully combined with high-pressure experiments. Based on results obtained for zircon (ZrSiO(4)), this paper introduces this new experimental approach involving diamond anvil cells and large ion-accelerator facilities. This technique provides a wide spectrum of geoscience applications from nanoscale simulations of fission-track formation under crustal conditions to phase transitions of radiation-damaged minerals resulting from meteorite impact.

15.
Materials (Basel) ; 12(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067785

RESUMO

Borosilicate glasses are the favored material for immobilization of high-level nuclear waste (HLW) from the reprocessing of spent fuel used in nuclear power plants. To assess the long-term stability of nuclear waste glasses, it is crucial to understand how self-irradiation affects the structural state of the glass and influences its dissolution behavior. In this study, we focus on the effect of heavy ion irradiation on the forward dissolution rate of a non-radioactive ternary borosilicate glass. To create extended radiation defects, the glass was subjected to heavy ion irradiation using 197Au ions that penetrated ~50 µm deep into the glass. The structural damage was characterized by Raman spectroscopy, revealing a significant depolymerization of the silicate and borate network in the irradiated glass and a reduction of the average boron coordination number. Real time, in situ fluid-cell Raman spectroscopic corrosion experiments were performed with the irradiated glass in a silica-undersaturated, 0.5 M NaHCO3 solution at temperatures between 80 and 85 °C (initial pH = 7.1). The time- and space-resolved in situ Raman data revealed a 3.7 ± 0.5 times increased forward dissolution rate for the irradiated glass compared to the non-irradiated glass, demonstrating a significant impact of irradiation-induced structural damage on the dissolution kinetics.

16.
Nat Commun ; 9(1): 86, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311661

RESUMO

Many-body effects produce deviations from the predictions of conventional band theory in quantum materials, leading to strongly correlated phases with insulating or bad metallic behavior. One example is the rare-earth nickelates RNiO3, which undergo metal-to-insulator transitions (MITs) whose origin is debated. Here, we combine total neutron scattering and broadband dielectric spectroscopy experiments to study and compare carrier dynamics and local crystal structure in LaNiO3 and NdNiO3. We find that the local crystal structure of both materials is distorted in the metallic phase, with slow, thermally activated carrier dynamics at high temperature. We further observe a sharp change in conductivity across the MIT in NdNiO3, accompanied by slight differences in the carrier hopping time. These results suggest that changes in carrier concentration drive the MIT through a polaronic mechanism, where the (bi)polaron liquid freezes into the insulating phase across the MIT temperature.

17.
Nat Commun ; 8: 15634, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541277

RESUMO

High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

19.
Sci Rep ; 6: 38772, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941870

RESUMO

Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.

20.
Sci Rep ; 6: 27196, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250764

RESUMO

We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa