Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2302983121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437529

RESUMO

Terrestrial glacial records from the Patagonian Andes and New Zealand Alps document quasi-synchronous Southern Hemisphere-wide glacier advances during the late Quaternary. However, these records are inherently incomplete. Here, we provide a continuous marine record of western-central Patagonian ice sheet (PIS) extent over a complete glacial-interglacial cycle back into the penultimate glacial (~140 ka). Sediment core MR16-09 PC03, located at 46°S and ~150 km offshore Chile, received high terrestrial sediment and meltwater input when the central PIS extended westward. We use biomarkers, foraminiferal oxygen isotopes, and major elemental data to reconstruct terrestrial sediment and freshwater input related to PIS variations. Our sediment record documents three intervals of general PIS marginal fluctuations, during Marine Isotope Stage (MIS) 6 (140 to 135 ka), MIS 4 (~70 to 60 ka), and late MIS 3 to MIS 2 (~40 to 18 ka). These higher terrigenous input intervals occurred during sea-level low stands, when the western PIS covered most of the Chilean fjords, which today retain glaciofluvial sediments. During these intervals, high-amplitude phases of enhanced sediment supply occur at millennial timescales, reflecting increased ice discharge most likely due to a growing PIS. We assign the late MIS 3 to MIS 2 phases and, by inference, older advances to Antarctic cold stages. We conclude that the increased sediment/meltwater release during Southern Hemisphere millennial-scale cold phases was likely related to higher precipitation caused by enhanced westerly winds at the northwestern margin of the PIS. Our records complement terrestrial archives and provide evidence for PIS climate sensitivity.

2.
Proc Natl Acad Sci U S A ; 112(44): 13496-501, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26417070

RESUMO

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ∼ 40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

3.
J Phycol ; 53(4): 889-907, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593733

RESUMO

The diatom genus Chaetoceros is one of the most abundant and diverse phytoplankton in marine and brackish waters worldwide. Within this genus, Chaetoceros socialis has been cited as one of the most common species. However, recent studies from different geographic areas have shown the presence of pseudo-cryptic diversity within the C. socialis complex. Members of this complex are characterized by curved chains (primary colonies) aggregating into globular clusters, where one of the four setae of each cell curves toward the center of the cluster and the other three orient outwards. New light and electron microscopy observations as well as molecular data on marine planktonic diatoms from the coastal waters off Chile revealed the presence of two new species, Chaetoceros sporotruncatus sp. nov. and C. dichatoensis. sp. nov. belonging to the C. socialis complex. The two new species are similar to other members of the complex (i.e., C. socialis and C. gelidus) in the primary and secondary structure of the colony, the orientation pattern of the setae, and the valve ultrastructure. The only morphological characters that can be used to differentiate the species of this complex are aspects related to resting spore morphology. The two newly described species are closely related to each other and form a sister clade to C. gelidus in molecular phylogenies. We also provide a phylogenetic status along with the morphological characterization of C. radicans and C. cintus, which are genetically related to the C. socialis complex.


Assuntos
Diatomáceas/classificação , Filogenia , Fitoplâncton/classificação , Chile , DNA de Algas/genética , Diatomáceas/citologia , Diatomáceas/genética , Diatomáceas/ultraestrutura , França , Itália , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fitoplâncton/citologia , Fitoplâncton/genética , Fitoplâncton/ultraestrutura , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Especificidade da Espécie
4.
PLoS One ; 12(1): e0168887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085887

RESUMO

Chaetoceros is one of the most species rich, widespread and abundant diatom genera in marine and brackish habitats worldwide. It therefore forms an excellent model for in-depth biodiversity studies, assessing morphological and genetic differentiation among groups of strains. The global Chaetoceros lorenzianus complex presently comprises three species known to science. However, our recent studies have shown that the group includes several previously unknown species. In this article, 50 strains, mainly from high latitudes and from warm-temperate waters, were examined morphologically and genetically and the results compared with those of field studies from elsewhere. The strains clustered into five groups, two of which are formed by C. decipiens Cleve and C. mitra (Bailey) Cleve, respectively. Their species descriptions are emended based on samples collected close to the type localities. The three other groups are formed by new species, C. elegans sp. nov., C. laevisporus sp. nov. and C. mannaii sp. nov. Characters used to distinguish each species are: orientation of setae, shape and size of the apertures, shape, size and density of the poroids on the setae and, at least in some species, characters of the resting spores. Our aim is to cover the global species diversity in this complex, as correct species delineation is the basis for exploring biodiversity, distribution of organisms, interactions in the food web and effects of environmental changes.


Assuntos
Biodiversidade , DNA Ribossômico/genética , Diatomáceas/classificação , Diatomáceas/genética , Ecossistema , Animais , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa