Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(7): 1196-1205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871986

RESUMO

Single-cell RNA sequencing allows us to model cellular state dynamics and fate decisions using expression similarity or RNA velocity to reconstruct state-change trajectories; however, trajectory inference does not incorporate valuable time point information or utilize additional modalities, whereas methods that address these different data views cannot be combined or do not scale. Here we present CellRank 2, a versatile and scalable framework to study cellular fate using multiview single-cell data of up to millions of cells in a unified fashion. CellRank 2 consistently recovers terminal states and fate probabilities across data modalities in human hematopoiesis and endodermal development. Our framework also allows combining transitions within and across experimental time points, a feature we use to recover genes promoting medullary thymic epithelial cell formation during pharyngeal endoderm development. Moreover, we enable estimating cell-specific transcription and degradation rates from metabolic-labeling data, which we apply to an intestinal organoid system to delineate differentiation trajectories and pinpoint regulatory strategies.


Assuntos
Diferenciação Celular , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Endoderma/citologia , Endoderma/metabolismo , Hematopoese , Linhagem da Célula , Análise de Sequência de RNA/métodos , Organoides/metabolismo , Organoides/citologia
2.
Nat Methods ; 19(2): 159-170, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027767

RESUMO

Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank ( https://cellrank.org ) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


Assuntos
Algoritmos , Biologia Computacional/métodos , Pâncreas Exócrino/citologia , Análise de Célula Única/métodos , Software , Animais , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular , Humanos , Pulmão/citologia , RNA , Regeneração
3.
Nature ; 571(7765): 419-423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292545

RESUMO

Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.


Assuntos
Regulação da Expressão Gênica/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Transcrição Gênica/genética , Alquilação , Animais , Ciclo Celular , Citomegalovirus/fisiologia , Metilação de DNA , Fibroblastos/metabolismo , Fibroblastos/virologia , Cinética , Camundongos , Regiões Promotoras Genéticas/genética , RNA/análise , RNA/química , Compostos de Sulfidrila/química
4.
Development ; 146(12)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249007

RESUMO

Single cell genomics has become a popular approach to uncover the cellular heterogeneity of progenitor and terminally differentiated cell types with great precision. This approach can also delineate lineage hierarchies and identify molecular programmes of cell-fate acquisition and segregation. Nowadays, tens of thousands of cells are routinely sequenced in single cell-based methods and even more are expected to be analysed in the future. However, interpretation of the resulting data is challenging and requires computational models at multiple levels of abstraction. In contrast to other applications of single cell sequencing, where clustering approaches dominate, developmental systems are generally modelled using continuous structures, trajectories and trees. These trajectory models carry the promise of elucidating mechanisms of development, disease and stimulation response at very high molecular resolution. However, their reliable analysis and biological interpretation requires an understanding of their underlying assumptions and limitations. Here, we review the basic concepts of such computational approaches and discuss the characteristics of developmental processes that can be learnt from trajectory models.


Assuntos
Genômica/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Cromatina/química , Biologia Computacional/métodos , Biologia do Desenvolvimento/tendências , Humanos , Metilação , Camundongos , Modelos Biológicos , Dinâmica não Linear , Proteômica , RNA/química , Splicing de RNA , Análise de Sequência de RNA , Software , Células-Tronco/citologia
5.
Nat Biotechnol ; 38(12): 1408-1414, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32747759

RESUMO

RNA velocity has opened up new ways of studying cellular differentiation in single-cell RNA-sequencing data. It describes the rate of gene expression change for an individual gene at a given time point based on the ratio of its spliced and unspliced messenger RNA (mRNA). However, errors in velocity estimates arise if the central assumptions of a common splicing rate and the observation of the full splicing dynamics with steady-state mRNA levels are violated. Here we present scVelo, a method that overcomes these limitations by solving the full transcriptional dynamics of splicing kinetics using a likelihood-based dynamical model. This generalizes RNA velocity to systems with transient cell states, which are common in development and in response to perturbations. We apply scVelo to disentangling subpopulation kinetics in neurogenesis and pancreatic endocrinogenesis. We infer gene-specific rates of transcription, splicing and degradation, recover each cell's position in the underlying differentiation processes and detect putative driver genes. scVelo will facilitate the study of lineage decisions and gene regulation.


Assuntos
Modelos Genéticos , RNA/genética , Animais , Ciclo Celular , Linhagem da Célula , Giro Denteado/metabolismo , Sistema Endócrino/metabolismo , Humanos , Cinética , Camundongos , Neurogênese/genética , Splicing de RNA/genética , Análise de Célula Única , Células-Tronco/metabolismo , Processos Estocásticos , Transcrição Gênica
6.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678092

RESUMO

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Assuntos
Células Epiteliais Alveolares/metabolismo , Queratina-8/metabolismo , Alvéolos Pulmonares/fisiologia , Fibrose Pulmonar/patologia , Regeneração , Células-Tronco/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Comunicação Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Queratina-8/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Fibrose Pulmonar/metabolismo , Análise de Célula Única , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa