Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810284

RESUMO

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Assuntos
Biodegradação Ambiental , Biofilmes , Microplásticos , Polietileno , Propranolol , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Polietileno/química , Adsorção , Trimetoprima , Atenolol , Triazóis/química , Esgotos/química , Esgotos/microbiologia
2.
Int J Phytoremediation ; 25(1): 82-88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35414315

RESUMO

Micropollutants (MPs) include organic chemicals, for example, pharmaceuticals and personal care products. MPs have been detected in the aquatic environment at low concentrations (ng/L-µg/L), which may lead to negative impacts on the ecosystem and humans. Phytoremediation is a green clean-up technology, which utilizes plants and their associated rhizosphere microorganisms to remove pollutants. The selection of plant species is important for the effectiveness of the phytoremediation of MPs. The plant species Phragmites australis, Typha angustifolia, and Juncus effuses are often used for MP removal. In this study, batch experiments were conducted to select plant species with an optimal ability to remove MPs, study the effect of temperature on MP removal in plants and the phytotoxicity of MPs. This study also explored the degradation of a persistent MP propranolol in plants in more detail. Data show that all three investigated plant species removed most MPs efficiently (close to 100 %) at both 10 and 21.5 °C. The tested plant species showed a different ability to translocate and accumulate propranolol in plant tissues. Typha angustifolia and Juncus effuses had a higher tolerance to the tested MPs than Phragmites australis. Typha angustifolia and Juncus effuses are recommended to be applied for phytoremediation of MPs.Novelty statement The novelty of this study is the selection of Typha angustifolia and Juncus effuses as proper plant species for phytoremediation of micropollutants (MPs). These two plant species were selected due to their good ability to remove MPs, tolerate low temperature, and resist the toxicity of MPs. The outcomes from this study can also be applied for constructed wetlands in removing MPs from wastewater. This study demonstrates the uptake and degradation processes of persistent MP propranolol in plants in more detail. Understanding the degradation mechanisms of a MP in plants is significant not only for the application of phytoremediation on MP removal but also for the development of constructed wetland studies.


Assuntos
Typhaceae , Poluentes Químicos da Água , Humanos , Typhaceae/metabolismo , Ecossistema , Biodegradação Ambiental , Propranolol/metabolismo , Poaceae/metabolismo , Plantas/metabolismo , Áreas Alagadas , Poluentes Químicos da Água/metabolismo
3.
Biodegradation ; 32(4): 419-433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33877512

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.


Assuntos
Herbicidas , Poluentes do Solo , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Brasil , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
4.
J Environ Manage ; 271: 110972, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579525

RESUMO

Cooling towers are responsible for a large part of the industrial fresh water withdrawal, and the reuse of cooling tower water (CTW) effluents can strongly lower industrial fresh water footprints. CTW requires desalination prior to being reused, but various CTW components, such as total organic carbon (TOC), conditioning chemicals and total suspended solids (TSS) hamper physico-chemical desalination technologies and need to be removed from the CTW. A cost-efficient and robust pre-treatment is thus required, which can be provided by constructed wetlands (CWs). The present study is the first study that determined the CTW pre-treatment efficiency of hybrid-CWs and the impact of winter season and biocides in the CTW on the pre-treatment efficiency. The most efficient CW flow type and dominant removal mechanisms for CW components hampering physico-chemical desalination were determined. Subsurface flow CWs removed PO43-, TSS and TOC as a result of adsorption and filtration. Vertical subsurface flow CWs (VSSF-CW) excelled in the removal of benzotriazole as a result of aerobic biodegradation. Horizontal subsurface flow CWs (HSSF-CW) allowed the denitrification of NO3- due to their anaerobic conditions. Open water CWs (OW-CWs) did not contribute to the removal of components that hamper physico-chemical desalination technologies, but do provide water storage options and habitat. The biological removal processes in the different CW flow types were negatively impacted by the winter season, but were not impacted by concentrations of the biocides glutaraldehyde and DBNPA that are relevant in practice. For optimal pre-treatment, a hybrid-CW, consisting of an initial VSSF-CW followed by an OW-CW and HSSF-CW is recommended. Future research should focus on integrating the hybrid-CW with a desalination technology, e.g. reverse osmosis, electrodialysis or capacitive ionization, to produce water that meets the requirements for use as cooling water and allow the reuse of CTW in the cooling tower itself.


Assuntos
Poluentes Químicos da Água/análise , Purificação da Água , Eliminação de Resíduos Líquidos , Águas Residuárias , Água , Áreas Alagadas
5.
Appl Microbiol Biotechnol ; 102(7): 3387-3397, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29478141

RESUMO

The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.


Assuntos
Biodegradação Ambiental , Microbiologia Industrial/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Etil-Éteres/metabolismo , Éteres Metílicos/metabolismo , Oxirredução , terc-Butil Álcool/metabolismo
6.
Environ Sci Technol ; 51(8): 4576-4584, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28346781

RESUMO

This study explores ibuprofen (IBP) uptake and transformation in the wetland plant species Phragmites australis and the underlying mechanisms. We grew P. australis in perlite under greenhouse conditions and treated plants with 60 µg/L of IBP. Roots and rhizomes (RR), stems and leaves (SL), and liquid samples were collected during 21 days of exposure. Results show that P. australis can take up, translocate, and degrade IBP. IBP was completely removed from the liquid medium after 21 days with a half-life of 2.1 days. IBP accumulated in RR and was partly translocated to SL. Meanwhile, four intermediates were detected in the plant tissues: hydroxy-IBP, 1,2-dihydroxy-IBP, carboxy-IBP and glucopyranosyloxy-hydroxy-IBP. Cytochrome P450 monooxygenase was involved in the production of the two hydroxy intermediates. We hypothesize that transformation of IBP was first catalyzed by P450, and then by glycosyltransferase, followed by further storage or metabolism in vacuoles or cell walls. No significant phytotoxicity was observed based on relative growth of plants and stress enzyme activities. In conclusion, we demonstrated for the first time that P. australis degrades IBP from water and is therefore a suitable species for application in constructed wetlands to clean wastewater effluents containing IBP and possibly also other micropollutants.


Assuntos
Ibuprofeno , Poaceae/metabolismo , Meia-Vida , Águas Residuárias , Áreas Alagadas
7.
Biotechnol Bioeng ; 111(10): 2009-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729067

RESUMO

Granular activated carbon (GAC) is used in water treatment systems, typically to remove pollutants such as natural organic matter, volatile organic compounds, chlorine, taste, and odor. GAC is also used as a key component of a new technology that combines a fluidized bed reactor with radio frequency electric fields for disinfection. So far, the effects of GAC on bacteria in these fluidized bed reactors are unclear. This paper describes a systematic study of the physico-chemical changes in five microbial media compositions caused by different concentrations (23-350 g/L) of GAC, and the effects of these physico-chemical changes on the metabolic activity and survival of a model microorganism (Escherichia coli YMc10) in a fluidized bed reactor. The chemical adsorption taking place in suspensions with specific GAC changed nutritional, osmotic, and pH conditions in the investigated microbial media (LB, diluted LB, PBS, diluted PBS, and tap water), leading to a decay of the metabolic activity and survival of E. coli. Especially media that are poor in organic and mineral compounds (e.g., PBS) with suspended GAC showed a concentration decay of 3.5 Log CFU/mL E. coli after 6 h. Organic compounds depletion and severe pH variation were enhanced in the presence of higher GAC concentrations.


Assuntos
Carvão Vegetal/metabolismo , Desinfecção/métodos , Escherichia coli/citologia , Adsorção , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Concentração Osmolar , Sais/metabolismo
8.
Appl Microbiol Biotechnol ; 98(6): 2751-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24092007

RESUMO

To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.


Assuntos
Bactérias/classificação , Biodegradação Ambiental , Biota , Gasolina , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Bioresour Technol ; 393: 130083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000642

RESUMO

Single microalgae species are effective at the removal of various organic micropollutants (OMPs), however increased species diversity might enhance this removal. Sixteen OMPs were added to 2 continuous photobioreactors, one inoculated with Chlorella sorokiniana and the other with a microalgal-bacterial community, for 112 d under natural light. Three media were sequentially used in 3 Periods: I) synthetic sewage (d 0-28), II) 10x diluted anaerobically digested black water (AnBW) (d 28-94) and III) 5x diluted AnBW (d 94-112). Twelve OMPs were removed > 30 %, while 4 were < 10 % removed. Removal efficiencies were similar for 9 OMPs, yet the mixed community showed a 2-3 times higher removal capacity (µg OMP/g dry weight) than C. sorokiniana during Period II pseudo steady state. The removal decreased drastically in Period III due to overgrowth of filamentous green algae. This study shows for the first time how microbial community composition and abundance are key for OMPs removal.


Assuntos
Chlorella , Microalgas , Fotobiorreatores/microbiologia , Esgotos , Bactérias , Biomassa
10.
Appl Environ Microbiol ; 79(2): 619-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144139

RESUMO

Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Gasolina , Microbiologia do Solo , Poluentes do Solo , Archaea/genética , Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
11.
Environ Sci Technol ; 47(19): 11182-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978110

RESUMO

The feasibility of a bioscreen for the in situ biodegradation of HCH and its intermediates is demonstrated at a contaminated site in The Netherlands, via the discontinuous addition of methanol as electron donor. An infiltration system was installed and operated at the site over a length of 150 m and a depth of 8 m, to create an anaerobic infiltration zone in which HCH is converted. The construction of the infiltration system was combined with the redevelopment of the site. During passage through the bioscreen, the concentration of HCH in the groundwater decreased from 600 µg/L to the detection limit of the individual HCH isomers (0.01 µg/L) after one year of operation. The concentration of the intermediate biodegradation products benzene and chlorobenzene increased and achieved steady state values of respectively 800 and 2700 µg/L. Benzene and chlorobenzene were treated aerobically on site in an existing wastewater treatment plant. By changing the infiltration regime, it is conclusively shown that HCH removal is the result of the biological degradation and stimulated by the addition of methanol as electron donor. To our knowledge, this is the first successful field demonstration of the stimulated transformation of HCH to intermediates in a full scale anaerobic in situ bioscreen, combined with an aerobic on site treatment to harmless end products.


Assuntos
Hexaclorocicloexano/metabolismo , Metanol/química , Poluentes Químicos da Água/metabolismo , Anaerobiose , Benzeno/metabolismo , Biodegradação Ambiental , Clorobenzenos/metabolismo , Países Baixos
12.
Appl Microbiol Biotechnol ; 97(17): 7887-98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23090052

RESUMO

Contaminant biodegradation in unsaturated soils may reduce the risks of vapor intrusion. However, the reported rates show large variability and are often derived from slurry experiments that are not representative of unsaturated conditions. Here, different laboratory setups are used to derive the biodegradation capacity of an unsaturated soil layer through which gaseous toluene migrates from the water table upwards. Experiments in static unsaturated soil microcosms at 6-30 % water-filled porosity (WFP) and unsaturated soil columns at 9, 14, and 27 % WFP were compared with liquid batches containing the same culture of Alicycliphilus denitrificans. The biodegradation rates for the liquid batches were orders of magnitude lower than for the other setups. Hence, liquid batches do not necessarily reflect optimal conditions for bacteria; either oxygen or toluene mass transfer at the cell scale or the absence of soil-water-air interfaces seemed to be limiting bacterial activity. For the column setup, the rates were limited by mass supply. The microcosm results could be described by apparent first-order biodegradation constants that increased with WFP or through a numerical model that included biodegradation as a first-order process taking place in the liquid phase only. The model liquid phase first-order rates varied between 6.25 and 20 h(-1) and were not related to the water content. Substrate availability was the primary factor limiting bioactivity, with evidence for physiological stress at the lowest water-filled porosity. The presented approach is useful to derive liquid phase biodegradation rates from experimental data and to include biodegradation in vapor intrusion models.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Comamonadaceae/metabolismo , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/metabolismo , Solo/química , Tolueno/metabolismo , Técnicas de Cultura Celular por Lotes/instrumentação , Biodegradação Ambiental , Comamonadaceae/química , Recuperação e Remediação Ambiental/instrumentação , Cinética , Poluentes do Solo/química , Tolueno/química
13.
Biodegradation ; 24(4): 487-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23242513

RESUMO

While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.


Assuntos
Bactérias/metabolismo , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Gasolina/análise , Oxigenases/genética , Oxigenases/metabolismo , Solo/química
14.
Water Res ; 230: 119494, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571965

RESUMO

Micropollutants (MPs), such as pharmaceuticals and antibiotics, are present in the environment at low concentrations (ng/L-µg/L). A constructed wetland (CW) is a nature-based wastewater treatment technology, which can be used to remove MPs from wastewater treatment plant effluent. This study aimed to improve MP removal of CWs by optimizing the design of batch-operated CW. Three pilot-scale CWs were built to study the effect of two design-features: the use of a support matrix (a mixture of bark and biochar) and continuous aeration. The use of bark-biochar as support matrix increased the removal of 11 of 12 studied MPs compared to the CW filled with conventional material sand. The highest improved removal by the addition of bark-biochar was more than 40% (median) for irbesartan, carbamazepine, hydrochlorothiazide and benzotriazole. Aerating the bed of the bark-biochar CW did not change MP removal. Besides, the presence of bark-biochar also enhanced the removal of total nitrogen during 10 months of operation, but no improvement was observed on the total organic carbon and total phosphorus removal. Considering the application in a batch-operated CW, MP removal can be greatly enhanced by replacing sand with bark-biochar that will act as MP adsorbing matrix.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Areia , Nitrogênio/análise
15.
Water Res ; 244: 120534, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659177

RESUMO

The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.


Assuntos
Águas Residuárias , Áreas Alagadas , Adsorção , Biodegradação Ambiental , Transporte Biológico
16.
J Hazard Mater ; 453: 131451, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086668

RESUMO

Microalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater (anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent (SCE)), were assessed. During batch operational mode, eleven OMPs were removed from AnBW and MW. When switching from batch to continuous mode (0.8 d HRT), the removal of most OMPs from AnBW and MW decreased, suggesting that a longer retention time enhances the removal of some OMPs. Most OMPs were not removed from SCE since poor nutrient availability limited C. sorokiniana growth. Further correlation analyses between wastewater characteristics, biomass and OMPs removal indicated that the wastewater soluble COD and biomass concentration predominantly affected the removal of OMPs. Lastly, carbon uptake rate had a higher effect on the removal of OMPs than nitrogen and phosphate uptake rate. These data will give an insight on the implementation of microalgae-based technologies for the removal of OMPs in wastewater with varying strengths and nutrient availability.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Carbono , Fosfatos , Biomassa , Nitrogênio
17.
Environ Microbiol ; 14(5): 1171-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22296107

RESUMO

An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.


Assuntos
Benzeno/metabolismo , Peptococcaceae/fisiologia , Anaerobiose , Burkholderiaceae/metabolismo , Burkholderiaceae/fisiologia , Cloratos/metabolismo , Nitratos/metabolismo , Peptococcaceae/metabolismo , Rhodocyclaceae/metabolismo , Rhodocyclaceae/fisiologia , Sulfatos/metabolismo
18.
Chemosphere ; 305: 135306, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35714955

RESUMO

The contamination of the aquatic environment by micropollutants (MPs) brings risks for the ecosystem and human health. Constructed wetlands (CWs) were an eco-friendly technology to remove MPs from wastewater treatment plant effluent. In this study, the removal of MPs was evaluated in seven vertical flow mesocosm CWs with different configurations, including different support matrices (sand and a combination of bark-biochar), light pre-treatments (UVC and sunlight) or bioaugmentation in support matrices (activated sludge). The CWs with bark-biochar as support matrix significantly enhanced the removal of irbesartan and carbamazepine (>40 %), compared to the CW filled with the conventional support matrix sand. UVC irradiation as pre-treatment was more efficient in removing MPs than sunlight irradiation. After UVC pre-treatment, less MPs accumulated in the plants in the subsequent CW unit compared to the CW unit without any pre-treatment. Moreover, in the UVC combined CW system, less sulfamethoxazole, furosemide, mecoprop and diclofenac were accumulated in the plants (<0.5 µg) than other MPs (>3 µg). The addition of 0.5 % activated sludge combined with the aeration of influent did not improve MP removal in the CW. Considering the application, a bark-biochar based CW combined with UVC pre-treatment will result in more MP removal than a conventional sand CW.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ecossistema , Humanos , Areia , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
19.
J Hazard Mater ; 422: 126840, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419848

RESUMO

Micropollutants can be removed in Biological Activated Carbon (BAC) filters through biodegradation, besides adsorption, when the conditions are favorable. In the present study, we build upon previous work on melamine biodegradation and activated carbon regeneration in batch experiments and assess the efficiency of this process in continuous flow lab-scale BAC filters. Melamine is frequently detected at low concentrations in surface water and is used here as a model micropollutant. BAC filters were inoculated with melamine degrading biomass and the contribution of biodegradation to melamine removal was assessed. Furthermore, we tested the effect of an additional carbon source (methanol) and the effect of contact time on melamine removal efficiency. We demonstrate that inoculation of activated carbon filters with melamine degrading biomass increases melamine removal efficiency by at least 25%. When an additional carbon source (methanol) is supplied, melamine removal is almost complete (up to 99%). Finally, through a nitrogen mass balance, we demonstrate that around 60% of the previously adsorbed melamine desorbs from the BAC surface when biodegradation rates in the liquid phase increase. Melamine desorption resulted in a partial recovery of the adsorption capacity.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Biodegradação Ambiental , Carvão Vegetal , Triazinas , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 838(Pt 4): 156526, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679938

RESUMO

Organic micropollutants (OMPs) need to be removed from wastewater as they can negatively affect aquatic organisms. It has been demonstrated that microalgae-based technologies are efficient in removing OMPs from wastewater. In this study, the removal processes and kinetics of six persistent OMPs (diclofenac, clarithromycin, benzotriazole, metoprolol, carbamazepine and mecoprop) were studied during cultivation of Scenedesmus obliquus in batch mode. These OMPs were added as individual compounds and in a mixture. Short experiments (8 days) were performed to avoid masking of OMP removal processes by light and nutrient limitation. The results show that diclofenac, clarithromycin, and benzotriazole were mainly removed by photodegradation (diclofenac), biodegradation (benzotriazole), or a combination of these two processes (clarithromycin). Peroxidase was involved in intracellular and extracellular biodegradation when benzotriazole was present as individual compound. Carbamazepine, metoprolol and mecoprop showed no biodegradation or photodegradation, and neglectable removal (<5%) by bioadsorption and bioaccumulation. Using an OMP mixture had an adverse effect on the photodegradation of clarithromycin and diclofenac, with reduced first-order kinetic constants compared to the individual compounds. Benzotriazole biodegradation was inhibited by the presence of the OMP mixture. This indicates that the presence of OMPs inhibits the photodegradation and biodegradation of some individual OMPs. These results will improve our understanding of removal processes of individual and mixtures of OMPs by microalgae-based technologies for wastewater treatment.


Assuntos
Clorofíceas , Microalgas , Scenedesmus , Poluentes Químicos da Água , Carbamazepina , Claritromicina , Diclofenaco , Metoprolol , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa