Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 596(22): 5343-5363, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30211447

RESUMO

KEY POINTS: Chronic hypercapnia per se has distinct effects on the mechanisms regulating steady-state ventilation and the CO2 /H+ chemoreflex. Chronic hypercapnia leads to sustained hyperpnoea that exceeds predicted ventilation based upon the CO2 /H+ chemoreflex. There is an integrative ventilatory, cardiovascular and metabolic physiological response to chronic hypercapnia. Chronic hypercapnia leads to deterioration of cognitive function. ABSTRACT: Respiratory diseases such as chronic obstructive pulmonary disease (COPD) often lead to chronic hypercapnia which may exacerbate progression of the disease, increase risk of mortality and contribute to comorbidities such as cognitive dysfunction. Determining the contribution of hypercapnia per se to adaptations in ventilation and cognitive dysfunction within this patient population is complicated by the presence of multiple comorbidities. Herein, we sought to determine the role of chronic hypercapnia per se on the temporal pattern of ventilation and the ventilatory CO2 /H+ chemoreflex by exposing healthy goats to either room air or an elevated inspired CO2 (InCO2 ) of 6% for 30 days. A second objective was to determine whether chronic hypercapnia per se contributes to cognitive dysfunction. During 30 days of exposure to 6% InCO2 , steady-state (SS) ventilation ( V̇I ) initially increased to 335% of control, and then within 1-5 days decreased and stabilized at ∼230% of control. There was an initial respiratory acidosis that was partially mitigated over time due to increased arterial [HCO3- ]. There was a transient decrease in the ventilatory CO2 /H+ chemoreflex, followed by return to pre-exposure levels. The SS V̇I during chronic hypercapnia was greater than predicted from the acute CO2 /H+ chemoreflex, suggesting separate mechanisms regulating SS V̇I and the chemoreflex. Finally, as assessed by a shape discrimination test, we found a sustained decrease in cognitive function during chronic hypercapnia. We conclude that chronic hypercapnia per se results in: (1) a disconnect between SS V̇I and the CO2 /H+ chemoreflex, and (2) deterioration of cognitive function.


Assuntos
Dióxido de Carbono/sangue , Cognição/efeitos dos fármacos , Hipercapnia/patologia , Adaptação Fisiológica , Animais , Feminino , Cabras , Reflexo , Respiração , Mecânica Respiratória/fisiologia
2.
Respir Physiol Neurobiol ; 299: 103855, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124284

RESUMO

BACKGROUND: Opioid-induced respiratory depression can be partially antagonized in the preBötzinger Complex and Parabrachial Nucleus/Kölliker-Fuse Complex. We hypothesized that additional opioid antagonism in the caudal medullary raphe completely reverses the opioid effect. METHODS: In adult ventilated, vagotomized, decerebrate rabbits, we administrated remifentanil intravenously at "analgesic", "apneic", and "very high" doses and determined the reversal with sequential naloxone microinjections into the bilateral Parabrachial Nucleus/Kölliker-Fuse Complex, preBötzinger Complex, and caudal medullary raphe. In separate animals, we injected opioid antagonists into the raphe without intravenous remifentanil. RESULTS: Sequential naloxone microinjections completely reversed respiratory rate depression from "analgesic" and "apneic" remifentanil, but not "very high" remifentanil concentrations. Antagonist injection into the caudal medullary raphe without remifentanil independently increased respiratory rate. CONCLUSIONS: Opioid-induced respiratory depression results from a combined effect on the respiratory rhythm generator and respiratory drive. The effect in the caudal medullary raphe is complex as we also observed local antagonism of endogenous opioid receptor activation, which has not been described before.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/farmacologia , Animais , Apneia/induzido quimicamente , Bulbo , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Coelhos , Remifentanil/efeitos adversos , Insuficiência Respiratória/induzido quimicamente
3.
Foot Ankle Spec ; : 19386400211009732, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142598

RESUMO

BACKGROUND: Large cystic osteochondral lesions of the talus (OLT) are challenging pathological conditions to treat, but particulated juvenile cartilage allografts (PJCAs) supplemented with bone grafts are a promising therapeutic option. The purpose of this project was to further elucidate the role of PJCA with concomitant bone autografts for treating large cystic OLTs with extensive subchondral bone involvement (greater than 150 mm2 in area and/or deeper than 5 mm). METHODS: We identified 6 patients with a mean OLT area of 307.2 ± 252.4 mm2 and a mean lesion depth of 10.85 ± 6.10 mm who underwent DeNovo PJCA with bone autografting between 2013 and 2017. Postoperative outcomes were assessed with radiographs, Foot and Ankle Outcome Scores (FAOS), and visual pain scale scores. RESULTS: At final follow-up (27.0 ± 12.59 weeks), all patients had symptomatic improvement and incorporation of the graft on radiographs. At an average of 62 ± 20.88 months postoperatively, no patients required a revision surgery. All patients contacted by phone in 2018 and 2020 reported they would do the procedure again in retrospect and reported an improvement in their symptoms relative to their preoperative state, especially with pain and in the FAOS activities of daily living subsection (91.93 ± 9.04 in 2018, 74.63 ± 26.86 in 2020). CONCLUSION: PJCA with concomitant bone autograft is a viable treatment option for patients with large cystic OLTs. LEVELS OF EVIDENCE: Level IV.

4.
J Appl Physiol (1985) ; 123(6): 1532-1544, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28839004

RESUMO

Neuromodulator interdependence posits that changes in one or more neuromodulators are compensated by changes in other modulators to maintain stability in the respiratory control network. Herein, we studied compensatory neuromodulation in the hypoglossal motor nucleus (HMN) after chronic implantation of microtubules unilaterally ( n = 5) or bilaterally ( n = 5) into the HMN. After recovery, receptor agonists or antagonists in mock cerebrospinal fluid (mCSF) were dialyzed during the awake and non-rapid eye movement (NREM) sleep states. During day studies, dialysis of the µ-opioid inhibitory receptor agonist [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO; 100 µM) decreased pulmonary ventilation (V̇i), breathing frequency ( f), and genioglossus (GG) muscle activity but did not alter neuromodulators measured in the effluent mCSF. However, neither unilateral dialysis of a broad spectrum muscarinic receptor antagonist (atropine; 50 mM) nor unilateral or bilateral dialysis of a mixture of excitatory receptor antagonists altered V̇i or GG activity, but all of these did increase HMN serotonin (5-HT) levels. Finally, during night studies, DAMGO and excitatory receptor antagonist decreased ventilatory variables during NREM sleep but not during wakefulness. These findings contrast with previous dialysis studies in the ventral respiratory column (VRC) where unilateral DAMGO or atropine dialysis had no effects on breathing and bilateral DAMGO or unilateral atropine increased V̇i and f and decreased GABA or increased 5-HT, respectively. Thus we conclude that the mechanisms of compensatory neuromodulation are less robust in the HMN than in the VRC under physiological conditions in adult goats, possibly because of site differences in the underlying mechanisms governing neuromodulator release and consequently neuronal activity, and/or responsiveness of receptors to compensatory neuromodulators. NEW & NOTEWORTHY Activation of inhibitory µ-opioid receptors in the hypoglossal motor nucleus decreased ventilation under physiological conditions and did not affect neurochemicals in effluent dialyzed mock cerebral spinal fluid. These findings contrast with studies in the ventral respiratory column where unilateral [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO) had no effects on ventilation and bilateral DAMGO or unilateral atropine increased ventilation and decreased GABA or increased serotonin, respectively. Our data support the hypothesis that mechanisms that govern local compensatory neuromodulation within the brain stem are site specific under physiological conditions.


Assuntos
Bulbo/fisiologia , Receptores Opioides mu/fisiologia , Respiração , Serotonina/fisiologia , Animais , Atropina/farmacologia , Eletromiografia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Cabras , Antagonistas Muscarínicos/farmacologia , Sono , Vigília
5.
Respir Physiol Neurobiol ; 239: 10-25, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28137700

RESUMO

Pulmonary ventilation (V̇I) in awake and sleeping goats does not change when antagonists to several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors into the VRC. Microtubules were implanted into the VRC of goats for dialysis of mCSF mixed with agonists to either µ-opioid (DAMGO) or GABAA (muscimol) receptors. We found: (1) V̇I decreased during unilateral but increased during bilateral dialysis of DAMGO, (2) dialyses of DAMGO destabilized breathing, (3) unilateral dialysis of muscimol increased V̇I, and (4) dialysis of DAMGO decreased GABA in the effluent mCSF. We conclude: (1) neuromodulatory compensation can occur during altered inhibitory neuromodulator receptor activity, and (2) the mechanism of compensation differs between G protein-coupled excitatory and inhibitory receptors and between G protein-coupled and inotropic inhibitory receptors.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Muscimol/farmacologia , Respiração/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Animais , Diálise/métodos , Relação Dose-Resposta a Droga , Feminino , Lateralidade Funcional/efeitos dos fármacos , Cabras , Neurotransmissores/metabolismo , Centro Respiratório/fisiologia , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
6.
J Appl Physiol (1985) ; 122(2): 327-338, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27687562

RESUMO

Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response.NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2) the hypothesis that absence of decreased V̇i and f during unilateral dialysis of excitatory receptor antagonists was due to compensation by the contralateral VRC was not supported by findings herein.


Assuntos
Neurotransmissores/farmacologia , Ventilação Pulmonar/efeitos dos fármacos , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/metabolismo , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/metabolismo , Animais , Atropina/farmacologia , Líquido Cefalorraquidiano/efeitos dos fármacos , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Feminino , Cabras , Microdiálise/métodos , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/metabolismo , Receptores de Serotonina/metabolismo , Respiração/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Serotonina/metabolismo , Sono/efeitos dos fármacos , Sono/fisiologia , Substância P/metabolismo , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa