Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sens Diagn ; 3(4): 623-630, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646186

RESUMO

Gadolinium (Gd)-based contrast agents (CAs) are widely used to enhance anatomical details in magnetic resonance imaging (MRI). Significant research has expanded the field of CAs into bioresponsive CAs by modulating the signal to image and monitor biochemical processes, such as pH. In this work, we introduce the modular, dynamic actuation mechanism of DNA-based nanostructures as a new way to modulate the MRI signal based on the rotational correlation time, τR. We combined a pH-responsive oligonucleotide (i-motif) and a clinical standard CA (Gd-DOTA) to develop a pH-responsive MRI CA. The i-motif folds into a quadruplex under acidic conditions and was incorporated onto gold nanoparticles (iM-GNP) to achieve increased relaxivity, r1, compared to the unbound i-motif. In vitro, iM-GNP resulted in a significant increase in r1 over a decreasing pH range (7.5-4.5) with a calculated pKa = 5.88 ± 0.01 and a 16.7% change per 0.1 pH unit. In comparison, a control CA with a non-responsive DNA strand (T33-GNP) did not show a significant change in r1 over the same pH range. The iM-GNP was further evaluated in 20% human serum and demonstrated a 28.14 ± 11.2% increase in signal from neutral pH to acidic pH. This approach paves a path for novel programmable, dynamic DNA-based complexes for τR-modulated bioresponsive MRI CAs.

2.
Appl Phys Rev ; 10(1): 011304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874908

RESUMO

The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.

3.
Anal Methods ; 14(10): 1006-1014, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35171148

RESUMO

DNA-based nanostructures (DNs) are advantageous for the design of functional materials for biology and medicine due to the nanoscale control provided by their predictable self-assembly. However, the use of DNs in vivo has been limited due to structural instability in biofluids. As the stability of a particular DN sets the scope of its potential biological applications, efficient methods to characterize stability are required. Here, we apply size exclusion chromatography (SEC) to study the stability of a tetrahedron DNA nanostructure (TDN) and demonstrate the analytical capabilities of our method in characterizing degradation by enzymes and a diluted human serum matrix. We show that SEC analysis can reliably assay TDN degradation by a nuclease through direct injection and peak integration. Furthermore, data analysis using a ratio chromatogram technique enables TDN peak deconvolution from the matrix of serum proteins. Using our method, we found that TDNs exhibit half-lives of 23.9 hours and 10.1 hours in 20% and 50% diluted human serum, respectively, which is consistent with reported stability studies in 10% fetal bovine serum. We anticipate that this method can be broadly applicable to characterize a variety of DNs and serve as an efficient technique toward analysis of the stability of new DN designs in complex biological matrixes.


Assuntos
Nanoestruturas , Cromatografia em Gel , DNA/química , Humanos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa