RESUMO
Drosophila sechellia is a dietary specialist endemic to the Seychelles islands that has evolved to consume the fruit of Morinda citrifolia. When ripe, the fruit of M. citrifolia contains octanoic acid and hexanoic acid, two medium-chain fatty acid volatiles that deter and are toxic to generalist insects. Drosophila sechellia has evolved resistance to these volatiles allowing it to feed almost exclusively on this host plant. The genetic basis of octanoic acid resistance has been the focus of multiple recent studies, but the mechanisms that govern hexanoic acid resistance in D. sechellia remain unknown. To understand how D. sechellia has evolved to specialize on M. citrifolia fruit and avoid the toxic effects of hexanoic acid, we exposed adult D. sechellia, D. melanogaster and D. simulans to hexanoic acid and performed RNA sequencing comparing their transcriptional responses to identify D. sechellia specific responses. Our analysis identified many more genes responding transcriptionally to hexanoic acid in the susceptible generalist species than in the specialist D. sechellia. Interrogation of the sets of differentially expressed genes showed that generalists regulated the expression of many genes involved in metabolism and detoxification whereas the specialist primarily downregulated genes involved in the innate immunity. Using these data, we have identified interesting candidate genes that may be critically important in aspects of adaptation to their food source that contains high concentrations of HA. Understanding how gene expression evolves during dietary specialization is crucial for our understanding of how ecological communities are built and how evolution shapes trophic interactions.
Assuntos
Drosophila melanogaster , Drosophila , Animais , Caproatos/metabolismo , Caproatos/toxicidade , Drosophila/fisiologia , Drosophila melanogaster/genética , Genômica , Especificidade da EspécieRESUMO
The underlying genetic basis of adaptive phenotypic changes is generally poorly understood, yet a growing number of case studies are beginning to shed light on important questions about the molecular nature and pleiotropy of such changes. We use Drosophila sechellia, a dietary specialist fruit fly that evolved to specialize on a single toxic host plant, Morinda citrifolia, as a model for adaptive phenotypic change and seek to determine the genetic basis of traits associated with host specialization in this species. The fruit of M. citrifolia is toxic to other drosophilids, primarily due to high levels of the defense chemical octanoic acid (OA), yet D. sechellia has evolved resistance to OA. Our prior work identified three Osiris family genes that reside in a fine-mapped QTL for OA resistance: Osiris 6 (Osi6), Osi7, and Osi8, which can alter OA resistance in adult D. melanogaster when knocked down with RNA interference suggesting they may contribute to OA resistance in D. sechellia. Genetic mapping identified overlapping genomic regions involved in larval and adult OA resistance in D. sechellia, yet it remains unknown whether Osiris genes contribute to resistance in both life stages. Furthermore, because multiple genomic regions contribute to OA resistance, we aim to identify other gene(s) involved in this adaptation. Here, we identify candidate larval OA resistance genes using RNA sequencing to measure genome-wide differential gene expression in D. sechellia larvae after exposure to OA and functionally test identified genes for a role in OA resistance. We then test the Osiris genes previously shown to alter adult OA resistance for effects on OA resistance in larvae. We found that Osi8 knockdown decreased OA resistance in D. melanogaster larvae. These data suggest that evolved changes in Osi8 could impact OA resistance in multiple life stages while Osi6 and Osi7 may only impact adult resistance to OA.
RESUMO
Drosophila sechellia is a dietary specialist fruit fly that evolved from a generalist ancestor to specialize on the toxic fruit of Morinda citrifolia This species pair has been the subject of numerous studies where the goal has largely been to determine the genetic basis of adaptations associated with host specialization. Because one of the most striking features of M. citrifolia fruit is the production of toxic volatile compounds that kill insects, most genomic studies in D. sechellia to date have focused on gene expression responses to the toxic compounds in its food. In this study, we aim to identify new genes important for host specialization by profiling gene expression response to 3,4-dihydroxyphenylalanine (L-DOPA). Recent work found it to be highly abundant in M. citrifolia, critical for reproductive success of D. sechellia, and supplementation of diet with the downstream pathway product dopamine can influence toxin resistance phenotypes in related species. Here we used a combination of functional genetics and genomics techniques to identify new genes that are important for D. sechellia ecological adaptation to this new niche. We show that L-DOPA exposure can affect toxin resistance phenotypes, identify genes with plastic responses to L-DOPA exposure, and functionally test an identified candidate gene. We found that knock-down of Esterase 6 (Est6) in a heterologous species alters toxin resistance suggesting Est6 may play an important role in D. sechellia host specialization.
Assuntos
Drosophila/genética , Genômica , Levodopa/farmacologia , Animais , Caprilatos/farmacologia , Dieta , Drosophila/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Genoma de Inseto , Especificidade da EspécieRESUMO
The dietary specialist fruit fly Drosophila sechellia has evolved to specialize on the toxic fruit of its host plant Morinda citrifolia Toxicity of Morinda fruit is primarily due to high levels of octanoic acid (OA). Using RNA interference (RNAi), prior work found that knockdown of Osiris family genes Osiris 6 (Osi6), Osi7, and Osi8 led to increased susceptibility to OA in adult D. melanogaster flies, likely representing genes underlying a Quantitative Trait Locus (QTL) for OA resistance in D. sechellia While genes in this major effect locus are beginning to be revealed, prior work has shown at least five regions of the genome contribute to OA resistance. Here, we identify new candidate OA resistance genes by performing differential gene expression analysis using RNA-sequencing (RNA-seq) on control and OA-exposed D. sechellia flies. We found 104 significantly differentially expressed genes with annotated orthologs in D. melanogaster, including six Osiris gene family members, consistent with previous functional studies and gene expression analyses. Gene ontology (GO) term enrichment showed significant enrichment for cuticle development in upregulated genes and significant enrichment of immune and defense responses in downregulated genes, suggesting important aspects of the physiology of D. sechellia that may play a role in OA resistance. In addition, we identified five candidate OA resistance genes that potentially underlie QTL peaks outside of the major effect region, representing promising new candidate genes for future functional studies.