Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2220272120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881624

RESUMO

T cells are present in early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and play a major role in disease outcome and long-lasting immunity. Nasal administration of a fully human anti-CD3 monoclonal antibody (Foralumab) reduced lung inflammation as well as serum IL-6 and C-reactive protein in moderate cases of COVID-19. Using serum proteomics and RNA-sequencing, we investigated the immune changes in patients treated with nasal Foralumab. In a randomized trial, mild to moderate COVID-19 outpatients received nasal Foralumab (100 µg/d) given for 10 consecutive days and were compared to patients that did not receive Foralumab. We found that naïve-like T cells were increased in Foralumab-treated subjects and NGK7+ effector T cells were reduced. CCL5, IL32, CST7, GZMH, GZMB, GZMA, PRF1, and CCL4 gene expression were downregulated in T cells and CASP1 was downregulated in T cells, monocytes, and B cells in subjects treated with Foralumab. In addition to the downregulation of effector features, an increase in TGFB1 gene expression in cell types with known effector function was observed in Foralumab-treated subjects. We also found increased expression of GTP-binding gene GIMAP7 in subjects treated with Foralumab. Rho/ROCK1, a downstream pathway of GTPases signaling was downregulated in Foralumab-treated individuals. TGFB1, GIMAP7, and NKG7 transcriptomic changes observed in Foralumab-treated COVID-19 subjects were also observed in healthy volunteers, MS subjects, and mice treated with nasal anti-CD3. Our findings demonstrate that nasal Foralumab modulates the inflammatory response in COVID-19 and provides a novel avenue to treat the disease.


Assuntos
Anticorpos Monoclonais , COVID-19 , Animais , Humanos , Camundongos , Administração Intranasal , Anticorpos Monoclonais/uso terapêutico , Proteínas de Ligação ao GTP , Proteínas de Membrana , Quinases Associadas a rho , SARS-CoV-2 , Linfócitos T , Fator de Crescimento Transformador beta1/genética
2.
Proc Natl Acad Sci U S A ; 120(37): e2309221120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669383

RESUMO

Emerging evidence suggests that dysregulation of neuroinflammation, particularly that orchestrated by microglia, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Danger signals including dead neurons, dystrophic axons, phosphorylated tau, and amyloid plaques alter the functional phenotype of microglia from a homeostatic (M0) to a neurodegenerative or disease-associated phenotype, which in turn drives neuroinflammation and promotes disease. Thus, therapies that target microglia activation constitute a unique approach for treating AD. Here, we report that nasally administered anti-CD3 monoclonal antibody in the 3xTg AD mouse model reduced microglial activation and improved cognition independent of amyloid beta deposition. In addition, gene expression analysis demonstrated decreased oxidative stress, increased axogenesis and synaptic organization, and metabolic changes in the hippocampus and cortex of nasal anti-CD3 treated animals. The beneficial effect of nasal anti-CD3 was associated with the accumulation of T cells in the brain where they were in close contact with microglial cells. Taken together, our findings identify nasal anti-CD3 as a unique form of immunotherapy to treat Alzheimer's disease independent of amyloid beta targeting.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Administração Intranasal , Peptídeos beta-Amiloides , Doenças Neuroinflamatórias , Anticorpos Monoclonais , Modelos Animais de Doenças
3.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281671

RESUMO

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Assuntos
Microbioma Gastrointestinal , Hipuratos , Linfócitos T , Animais , Camundongos , Corpo Estriado , Neurônios , Comportamento Compulsivo
4.
Brain Behav Immun ; 119: 317-332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552925

RESUMO

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.


Assuntos
Encéfalo , Proteínas de Membrana , Camundongos Knockout , Neurônios , Sinapses , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Células Cultivadas , Complemento C3/metabolismo , Proteínas do Sistema Complemento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo
5.
Am J Respir Cell Mol Biol ; 69(6): 666-677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552821

RESUMO

Eosinophils (Eos) reside in multiple organs during homeostasis and respond rapidly to an inflammatory challenge. Although Eos share chemical staining properties, they also demonstrate phenotypic and functional plasticity that is not fully understood. Here, we used a murine model of allergic lung inflammation to characterize Eos subsets and determine their spatiotemporal and functional regulation during inflammation and its resolution in response to resolvin D2 (RvD2), a potent specialized proresolving mediator. Two Eos subsets were identified by CD101 expression with distinct anatomic localization and transcriptional signatures at baseline and during inflammation. CD101low Eos were predominantly located in a lung vascular niche and responded to allergen challenge by moving into the lung interstitium. CD101high Eos were predominantly located in bronchoalveolar lavage (BAL) and extravascular lung, only present during inflammation, and had transcriptional evidence for cell activation. RvD2 reduced total Eos numbers and changed their phenotype and activation by at least two distinct mechanisms: decreasing interleukin 5-dependent recruitment of CD101low Eos and decreasing conversion of CD101low Eos to CD101high Eos. Collectively, these findings indicate that Eos are a heterogeneous pool of cells with distinct activation states and spatiotemporal regulation during resolution of inflammation and that RvD2 is a potent proresolving mediator for Eos recruitment and activation.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Eosinofilia Pulmonar , Camundongos , Animais , Eosinófilos/metabolismo , Líquido da Lavagem Broncoalveolar , Eosinofilia Pulmonar/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo , Fenótipo
6.
Brain Commun ; 6(4): fcae147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045090

RESUMO

The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.

7.
Mucosal Immunol ; 17(5): 911-922, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38925529

RESUMO

Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.


Assuntos
Células Dendríticas , Proteínas Alimentares , Microbioma Gastrointestinal , Homeostase , Mucosa Intestinal , Animais , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Imunidade nas Mucosas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa