Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(5): 726-738, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387878

RESUMO

ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.

2.
Angew Chem Int Ed Engl ; 63(16): e202319960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375976

RESUMO

Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.

3.
J Am Chem Soc ; 145(1): 345-358, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535642

RESUMO

Hypervalent chloranes are a class of rare and poorly explored reagents. Their unique electronic properties confer reactivity that is complementary to that of the common iodanes and emerging bromanes. Highly chemo- and regioselective, metal-free, and mild C-C and C-O couplings are reported here. Experimental and computational mechanistic studies elucidate the unprecedented reactivities and selectivities of these systems and the intermediacy of aryne intermediates. The synthetic potential of these transformations is further demonstrated via the post-functionalization of C-C and C-O coupling products obtained from reactions of chloranes with phenols under different conditions.


Assuntos
Fenóis , Indicadores e Reagentes
4.
J Org Chem ; 86(21): 15433-15452, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34657418

RESUMO

Trinuclear all-metal aromatic clusters are an original class of molecules with a cyclic and planar metal core. Characterized by peculiar metal-metal delocalized bonds, they represent a new frontier in transition-metal catalysis. We report a study on C-C-forming reactions of polyunsaturated substrates catalyzed by trinuclear all-metal aromatic palladium clusters. The synthesis of two new families of tricyclic compounds was obtained with a broad functional group tolerance under mild reaction conditions. A peculiar regio- and diastereoselectivity characterized the method, demonstrating that trinuclear palladium complexes are complementary to their popular mononuclear peers. Furthermore, preliminary studies on the mechanism of these polycyclization reactions revealed unique features of the homogeneous catalytic system.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ácidos Carboxílicos , Catálise , Paládio
5.
Angew Chem Int Ed Engl ; 60(27): 14852-14857, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33901330

RESUMO

Despite the widespread application of hypervalent iodines, the corresponding λ3 -bromanes are less explored. Herein we report a general, safe, and high-yielding strategy to access cyclic diaryl λ3 -bromanes. These unique compounds feature reactivity that is appealing and complementary to that of λ3 -iodanes, generating arynes under mild reaction conditions and in the presence of a weak base. Accordingly, formal meta-selective transition-metal-free C-O and C-N couplings may be achieved. Mechanistic studies unambiguously support the aryne generation mechanism.

6.
Molecules ; 25(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326406

RESUMO

3d transition metals-catalyzed C-H bond functionalizations represent nowadays an important tool in organic synthesis, appearing as the most promising alternative to cross-coupling reactions. Among 3d transition metals, iron found widespread application due to its availability and benign nature, and it was established as an efficient catalyst in organic synthesis. In this context, the use of ortho-orientating directing groups (DGs) turned out to be necessary for promoting selective iron-catalyzed C-H functionalization reactions. Very recently, triazoles DGs were demonstrated to be more than an excellent alternative to the commonly employed 8-aminoquinoline (AQ) DG, as a result of their modular synthesis as well as the mild reaction conditions applied for their removal. In addition, their tunable geometry and electronics allowed for new unprecedented reactivities in iron-catalyzed C-H activation methodologies that will be summarized within this review.


Assuntos
Carbono/química , Hidrogênio/química , Ferro/química , Triazóis/química , Alcadienos/química , Alquilação , Alcinos/química , Catálise
7.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858925

RESUMO

Asymmetric transition-metal catalysis represents a fascinating challenge in the field of organic chemistry research. Since seminal advances in the late 60s, which were finally recognized by the Nobel Prize to Noyori, Sharpless and Knowles in 2001, the scientific community explored several approaches to emulate nature in producing chiral organic molecules. In a scenario that has been for a long time dominated by the use of late-transition metals (TM) catalysts, the use of 3d-TMs and particularly iron has found, recently, a widespread application. Indeed, the low toxicity and the earth-abundancy of iron, along with its chemical versatility, allowed for the development of unprecedented and more sustainable catalytic transformations. While several competent reviews tried to provide a complete picture of the astounding advances achieved in this area, within this review we aimed to survey the latest achievements and new concepts brought in the field of enantioselective iron-catalyzed transformations.


Assuntos
Ferro/química , Catálise , Química Orgânica , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 58(20): 6703-6707, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30875451

RESUMO

A variety of linear dienynes can deliver complex tetracyclic frameworks in the presence of an IrIII complex and visible light. Product formation involves the generation of four new C-C bonds and six contiguous stereocenters, which decorate two [3.1.0] bicyclic units tethered through their bridging quaternary carbon atoms. The internal alkyne acts as a formal dicarbenoid for the generation of two cyclopropanes in these radical cation cascades. This behavior has not been previously observed for organic reactive intermediates and can be extended to intermolecular reactions and diendiynes.

9.
Chem Sci ; 15(5): 1557-1569, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303936

RESUMO

In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.

10.
Org Lett ; 26(36): 7596-7600, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39213514

RESUMO

Alkyne-functionalized oxetanes are presented as versatile substrates that in combination with amine reagents can be transformed into structurally diverse, chiral γ-amino alcohols featuring a tetrasubstituted tertiary stereocenter under Cu catalysis. Control experiments demonstrate the privileged nature of these oxetane precursors in terms of yield and asymmetric induction levels in the developed protocol, and postsynthetic modifications offer an easy way to access more advanced synthons.

11.
JACS Au ; 4(7): 2585-2595, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39055158

RESUMO

Light-mediated reactions have emerged as an indispensable tool in organic synthesis and drug discovery, enabling novel transformations and providing access to previously unexplored chemical space. Despite their widespread application in both academic and industrial research, the utilization of light as an energy source still encounters challenges regarding reproducibility and data robustness. Herein we present a comprehensive head-to-head comparison of commercially available batch photoreactors, alongside the introduction of the use of batch and flow photoreactors in parallel synthesis. Hence, we aim to establish a reliable and consistent platform for light-mediated reactions in high-throughput mode. Herein, we showcase the identification of several platforms aligning with the rigorous demands for efficient and robust high-throughput experimentation screenings and library synthesis.

12.
Org Lett ; 23(16): 6536-6541, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34369150

RESUMO

A cascade of styrylynols promoted by MnO2 allows the synthesis of fused tricycles with a naphthalene core. The reaction occurs under ambient conditions, offering a practical synthetic tool because of the inexpensive and abundant manganese species. The method affords products through the sequential oxidation of a propargyl alcohol, stepwise Diels-Alder cyclization, and finally rearomatization. According to density functional theory, the usually unfavorable stepwise Diels-Alder mechanism is instead a general tool for eliciting otherwise challenging dearomative annulation.

13.
Org Lett ; 23(23): 9047-9052, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806390

RESUMO

Biaryls have widespread applications in organic synthesis. However, sequentially polysubstituted biaryls are underdeveloped due to their challenging preparation. Herein, we report the synthesis of dissymetric 2,3,2',3',4-substituted biaryls via pericyclic reactions of cyclic diaryl λ3-bromanes. The functional groups tolerance and atom economy allow access to molecular complexity in a single reaction step. Continuous flow protocol has been designed for the scale-up of the reaction, while postfunctionalizations have been developed taking advantage of the residual Br-atom.

14.
Org Lett ; 20(17): 5247-5250, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30112911

RESUMO

The cleavage of sulfidic C-S bonds under visible-light irradiation was harnessed to generate carbocations under neutral conditions and synthesize valuable di- and triarylalkanes as well as benzyl amines. To this end, photoredox catalysis and direct photoinduced C-S bond cleavage are used as complementary approaches and participate in the versatility of the general strategy. Extensive mechanistic studies have demonstrated the diversity of the reaction mechanism at work in these different reactions.

15.
Chem Commun (Camb) ; 54(99): 14021-14024, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30484446

RESUMO

An in situ formed palladium hydride catalyst enables the sequential dual isomerization of propargylamide derivatives to 1-amido-1,3-dienes with high chemo- and regioselectivity. The reaction shows ample functional group tolerance, delivering a valuable class of products, including highly deuterated ones, from readily available reagents. The reaction occurs through a complex mechanism studied by DFT modelling.

16.
Org Lett ; 20(11): 3220-3224, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767990

RESUMO

The combination of a Pd(0) complex with benzoic acid converts propargylic tryptamines to the corresponding tetrahydro-ß-carbolines. The method uses unprotected indoles and affords the desired products with ample functional group tolerance. Detailed modeling studies reveal a close synergy between the organic and metal catalysts, which enables sequential alkyne isomerization, indole C-H activation, and eventual C-C reductive elimination to afford the target heterocycles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa