Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 207(10): 1535-43, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23402825

RESUMO

BACKGROUND: Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS: Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS: MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS: Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.


Assuntos
Proteínas de Bactérias/genética , Imunidade Inata , Muramidase/antagonistas & inibidores , Fatores de Virulência/genética , Yersinia pestis/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Sangue/imunologia , Sangue/microbiologia , Bovinos , Linhagem Celular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Feminino , Deleção de Genes , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Muramidase/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Periplasma/química , Fagócitos/metabolismo , Fagócitos/microbiologia , Peste/imunologia , Peste/microbiologia , Peste/patologia , Ratos , Ratos Endogâmicos BN , Soroalbumina Bovina/química , Virulência , Fatores de Virulência/metabolismo , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/patologia
2.
J Bacteriol ; 193(7): 1757-66, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21296961

RESUMO

The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus group in terms of metabolic and nhe expression capacities. We performed growth performance measurements, metabolite analysis, and mRNA measurements of strains F4430/73, F4810/72, F837/76, and PA cultured under anoxic and fully oxic conditions. The results showed that expression levels of nhe and ldhA, which encodes lactate dehydrogenase A (LdhA), were correlated in both aerobically and anaerobically grown cells. We examined the role of LdhA in the F4430/73 strain by constructing an ldhA mutant. The ldhA mutation was more deleterious to anaerobically grown cells than to aerobically grown cells, causing growth limitation and strong deregulation of key fermentative genes. More importantly, the ldhA mutation downregulated enterotoxin gene expression under both anaerobiosis and aerobiosis, with a more pronounced effect under anaerobiosis. Therefore, LdhA was found to exert a major control on both fermentative growth and enterotoxin expression, and it is concluded that there is a direct link between fermentative metabolism and virulence in B. cereus. The data presented also provide evidence that LdhA-dependent regulation of enterotoxin gene expression is oxygen independent. This study is the first report to describe a role of a fermentative enzyme in virulence in B. cereus.


Assuntos
Bacillus cereus/enzimologia , Bacillus cereus/patogenicidade , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , L-Lactato Desidrogenase/metabolismo , Anaerobiose , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Fermentação , Regulação Bacteriana da Expressão Gênica/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Dados de Sequência Molecular , Óperon , Transcrição Gênica , Virulência
3.
PLoS One ; 9(9): e107354, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216269

RESUMO

The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.


Assuntos
Bacillus cereus/genética , Produtos do Gene rex/biossíntese , Proteínas de Membrana/biossíntese , Proteômica , Anaerobiose/genética , Bacillus cereus/metabolismo , DNA Bacteriano/genética , Enterotoxinas/biossíntese , Enterotoxinas/metabolismo , Exotoxinas/biossíntese , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Produtos do Gene rex/genética , Humanos , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , NAD/metabolismo , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa