Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 27(5): 1578-1593, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28374945

RESUMO

Understanding the anthropogenic and natural controls that affect the patterns, distribution, and dynamics of terrestrial carbon is crucial to meeting climate change mitigation objectives. We assessed the human and natural controls over aboveground tree biomass density in African dry tropical forests, using Zambia's first nationwide forest inventory. We identified predictors that best explain the variation in biomass density, contrasted anthropogenic and natural sites at different spatial scales, and compared sites with different stand structure characteristics and species composition. In addition, we evaluated the effects of different management and conservation practices on biomass density. Variation in biomass density was mostly determined by biotic processes, linked with both species richness and dominance (evenness), and to a lesser extent, by land use, environmental controls, and spatial structure. Biomass density was negatively associated with tree species evenness and positively associated with species richness for both natural and human-modified sites. Human influence variables (including distance to roads, distance to town, fire occurrence, and the population on site) did not explain substantial variation in biomass density in comparison to biodiversity variables. The relationship of human activities to biomass density in managed sites appears to be mediated by effects on species diversity and stand structure characteristics, with lower values in human-modified sites for all metrics tested. Small contrasts in carbon density between human-modified and natural forest sites signal the potential to maintain carbon in the landscape inside but also outside forestlands in this region. Biodiversity is positively related to biomass density in both human and natural sites, demonstrating potential synergies between biodiversity conservation and climate change mitigation. This is the first evidence of positive outcomes of protected areas and participatory forest management on carbon storage at national scale in Zambia. This research shows that understanding controls over biomass density can provide policy relevant inputs for carbon management and on ecological processes affecting carbon storage.


Assuntos
Biomassa , Conservação dos Recursos Naturais/métodos , Florestas , Árvores/fisiologia , Biodiversidade , Meio Ambiente , Atividades Humanas , Zâmbia
2.
Carbon Balance Manag ; 4: 2, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19320965

RESUMO

Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.

3.
Science ; 316(5830): 1451, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17556578

RESUMO

Industrial logging has become the most extensive land use in Central Africa, with more than 600,000 square kilometers (30%) of forest currently under concession. With use of a time series of satellite imagery for the period from 1976 to 2003, we measured 51,916 kilometers of new logging roads. The density of roads across the forested region was 0.03 kilometer per square kilometer, but areas of Gabon and Equatorial Guinea had values over 0.09 kilometer per square kilometer. A new frontier of logging expansion was identified within the Democratic Republic of Congo, which contains 63% of the remaining forest of the region. Tree felling and skid trails increased disturbance in selectively logged areas.


Assuntos
Indústrias , Árvores , Madeira , África Central , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa