RESUMO
Melatonin, noted for its anti-cancer properties in various malignancies, including cutaneous melanoma, shows promise in Uveal melanoma (UM) treatment. This study aimed to evaluate melatonin receptor expression in primary UM and its association with UM-related mortality and prognostic factors. Immunohistochemical analysis of 47 primary UM tissues showed low expression of melatonin receptor 1A (MTNR1A) and melatonin receptor 1B (MTNR1B), with MTNR1A significantly higher in patients who succumbed to UM. Analysis of TCGA data from 80 UM patients revealed RNA expression for MTNR1A, retinoic acid-related orphan receptor alpha (RORα), and N-ribosyldihydronicotinamide:quinone oxidoreductase (NQO2), but not MTNR1B or G protein-coupled receptor 50 (GPR50). Higher MTNR1A RNA levels were observed in patients with a BRCA1 Associated Protein 1 (BAP1) mutation, and higher NQO2 RNA levels were noted in patients with the epithelioid tumor cell type. However, Kaplan-Meier analysis did not show distinct survival probabilities based on receptor expression. This study concludes that UM clinical samples express melatonin receptors, suggesting a potential mechanism for melatonin's anti-cancer effects. Despite finding higher MTNR1A expression in patients who died of UM, no survival differences were observed.
Assuntos
Melanoma , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptor MT1 de Melatonina , Ubiquitina Tiolesterase , Neoplasias Uveais , Humanos , Neoplasias Uveais/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/mortalidade , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/genética , Idoso , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Prognóstico , Adulto , Idoso de 80 Anos ou mais , Mutação , Melatonina/metabolismo , Estimativa de Kaplan-MeierRESUMO
PURPOSE: To develop a prognostic test based on a single blood sample obtained at the time of uveal melanoma diagnosis. METHODS: 83 patients diagnosed with posterior uveal melanoma between 1996 and 2000 were included. Peripheral serum samples were obtained at diagnosis and kept at -80 °C until this analysis. Protein profiling of 84 cancer-related proteins was used to screen for potential biomarkers and a prognostic test that stratifies patients into metastatic risk categories was developed (serUM-Px) in a training cohort and then tested in a validation cohort. RESULTS: Low serum leptin levels and high osteopontin levels were found to identify patients with poor prognosis and were therefore selected for inclusion in the final test. In the validation cohort, patient sex and American Joint Committee on Cancer stages were similarly distributed between the low, intermediate, and high metastatic risk categories. With increasing metastatic risk category, patients had shorter metastasis-free- and overall survival, as well as greater cumulative incidence of uveal melanoma-related mortality in competing risk analysis (P = 0.007, 0.018 and 0.029, respectively). In multivariate Cox regression, serUM-Px was an independent predictor of metastasis with tumor size and patient sex as covariates (hazard ratio 3.2, 95% CI 1.5-6.9). CONCLUSIONS: A prognostic test based on a single peripheral venous blood sample at the time of uveal melanoma diagnosis stratifies patients into low, intermediate, and high metastatic risk categories. Prospective validation will facilitate its clinical utility.
Assuntos
Neoplasias Uveais , Humanos , Taxa de Sobrevida , Prognóstico , Neoplasias Uveais/patologia , Proteínas SanguíneasRESUMO
PURPOSE: To report the time trends in basic patient characteristics and the number of specimens received at a national referral center for ophthalmic pathology. METHODS: Data on patient sex, age at surgical resection and geographical location of the referring unit were obtained for all specimens received at the St. Erik Ophthalmic Pathology laboratory, Stockholm, Sweden, between January 1st, 1959, and December 31st, 2021. RESULTS: A total of 33 057 specimens had been received, of which 14 560 (44%) came from men and 18 477 (56%) from women (for 20 patients, the sex was not specified). The average annual percent change (AAPC) in the number specimens received was + 10.5%, whereas the Swedish population increased with 0.5% per year. Patients became older throughout the period, with an average yearly increase of patient age at surgery of 0.3 years (AAPC 0.2%). Overall, women were three years older than men at surgery (59.4 versus 56.4 years, P < 0.0001) The number of specimens increased with patient age from the first to the 8th decade, after which it decreased to zero in the 11th decade. The largest portion of patients had undergone their surgery in one of the hospitals or clinics in the capital region, with four of the five largest sources corresponding to the most populous counties in the country. CONCLUSIONS: During six decades, the growth in number of specimens sent to our national referral center for ophthalmic pathology has greatly outpaced the growth of the population, indicating an increasing demand for subspecialized services. Throughout the period, patients have become older, and a higher number of specimens have been submitted from female patients.
Assuntos
Olho , Face , Masculino , Feminino , Humanos , Lactente , Encaminhamento e Consulta , Suécia/epidemiologiaRESUMO
In retinopathy of prematurity (ROP), the abnormal retinal neovascularization is often accompanied by retinal neuronal dysfunction. Here, a rat model of oxygen-induced retinopathy (OIR), which mimics the ROP disease, was used to investigate changes in the expression of key mediators of autophagy and markers of cell death in the rat retina. In addition, rats were treated from birth to postnatal day 14 and 18 with 3-methyladenine (3-MA), an inhibitor of autophagy. Immunoblot and immunofluorescence analysis demonstrated that autophagic mechanisms are dysregulated in the retina of OIR rats and indicated a possible correlation between autophagy and necroptosis, but not apoptosis. We found that 3-MA acts predominantly by reducing autophagic and necroptotic markers in the OIR retinas, having no effects on apoptotic markers. However, 3-MA does not ameliorate retinal function, which results compromised in this model. Taken together, these results revealed the crucial role of autophagy in retinal cells of OIR rats. Thus, inhibiting autophagy may be viewed as a putative strategy to counteract ROP.
Assuntos
Autofagia , Oxigênio/efeitos adversos , Retina/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Humanos , Recém-Nascido , Ratos , Retina/patologia , Doenças Retinianas/patologia , Transdução de SinaisRESUMO
BACKGROUND: Echinomycin (EKN), an inhibitor of hypoxia-inducible factor (HIF)-1 DNA-binding activity, has been implied as a possible therapeutic agent in ischemic diseases. Here, we assess EKN in hypoxia-driven responses in vitro using human primary adult retinal pigment epithelium cells (aRPE) and retinal endothelial cells (hREC), and in vivo using the laser-induced mouse choroidal neovascularization (CNV) model. METHODS: Effects of EKN on hypoxia-mediated pathways in aRPE were analyzed by Western blotting for HIF-1α protein, quantitative PCR of HIF-target genes, and proteome array for soluble angiogenic factors. In vitro inhibition of angiogenesis by EKN was determined in hREC. In vivo inhibition of angiogenesis by EKN was determined in the mouse laser-induced CNV, as a model of HIF-associated ocular neovascularization. CNV lesion area was determined by fundus fluorescein angiography. RESULTS: aRPE treated with EKN showed hypoxia-dependent significantly decreased cell recovery in the wound healing assay. These results were supported by lower levels of HIF-mediated transcripts detected in hypoxic aRPE cells treated with EKN compared with non-treated controls, and confirmed by proteome profiler for angiogenic factors. hREC exposed to aRPE EKN-conditioned medium displayed reduced sprouting angiogenesis. Mice with laser-induced CNV treated with intravitreally injected EKN showed significantly decreased vascular lesion area when compared with a mouse equivalent of aflibercept, or vehicle-treated controls. CONCLUSIONS: Our data proposes EKN as a potent inhibitor of HIF-mediated angiogenesis in retinal cells and in the mouse model of CNV, which could have future implications in the treatment of patients with neovascular age-related macular degeneration.
Assuntos
Neovascularização de Coroide/tratamento farmacológico , Equinomicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Adulto , Células Cultivadas , Neovascularização de Coroide/metabolismo , Angiofluoresceinografia , Fundo de Olho , Humanos , Epitélio Pigmentado da Retina/patologia , Transdução de SinaisRESUMO
OBJECTIVES: Almost half of all patients diagnosed with uveal melanoma will die of metastatic disease. This has been attributed to early seeding of micrometastases. We investigate the presence, density, organ involvement, and characteristics of micrometastases of uveal melanoma in tissue obtained at autopsy of patients with and without coexisting macrometastases. METHODS: Patients diagnosed with primary uveal melanoma at a national referral center between 1960 and 2020 (n = 4,282) were cross-referenced with autopsy registers at nearby hospitals. Eleven patients were included. Formalin-fixed, paraffin-embedded tissue samples obtained during autopsy were examined with routine histology, immunohistochemistry, and immunomagnetic separation. RESULTS: Micrometastases were detected in 5 of 5 patients with and in 5 of 6 patients without coexisting macrometastases. Micrometastases were identified in several sites, including lungs, kidneys, myocardium, and bone marrow. Their highest density per mm2 of tissue was seen in the liver. Of 11 examined patients, 2 had at least 1 BAP-1-positive metastasis. All micrometastases had immune cell infiltrates and no or very low proliferative activity. CONCLUSIONS: We demonstrate multiorgan involvement of apparently dormant micrometastases in patients with uveal melanoma. This suggests that micrometastases are present in nearly all patients diagnosed with primary uveal melanoma, regardless of coexisting macrometastases.
Assuntos
Melanoma , Neoplasias Uveais , Humanos , Micrometástase de Neoplasia , Melanoma/patologia , Fígado/patologiaRESUMO
Glaucoma is the leading cause of irreversible blindness and is a major health and economic burden. Current treatments do not address the neurodegenerative component of glaucoma. In animal models of glaucoma, the capacity to maintain retinal nicotinamide adenine dinucleotide (NAD) pools declines early during disease pathogenesis. Treatment with nicotinamide, an NAD precursor through the NAD salvage pathway, robustly protects against neurodegeneration in a number of glaucoma models and improves vision in existing glaucoma patients. However, it remains unknown in humans what retinal cell types are able to process nicotinamide to NAD and how these are affected in glaucoma. To address this, we utilized publicly available RNA-sequencing data (bulk, single cell, and single nucleus) and antibody labelling in highly preserved enucleated human eyes to identify expression of NAD synthesizing enzyme machinery. This identifies that the neural retina favors expression of the NAD salvage pathway, and that retinal ganglion cells are particularly enriched for these enzymes. NMNAT2, a key terminal enzyme in the salvage pathway, is predominantly expressed in retinal ganglion cell relevant layers of the retina and declines in glaucoma. These findings suggest that human retinal ganglion cells can directly utilize nicotinamide and could maintain a capacity to do so in glaucoma, showing promise for ongoing clinical trials.
Assuntos
Glaucoma , NAD , Animais , Humanos , NAD/metabolismo , Niacinamida/metabolismo , Retina/patologia , Glaucoma/patologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologiaRESUMO
Purpose: To investigate whether nicotinamide (NAM) modulates retinal vasculature in glaucoma. Methods: This was a prospective controlled clinical trial investigating animal and human histopathology. Participants included normotensive and ocular hypertensive rats, postmortem human ocular tissue, glaucoma patients (n = 90), and healthy controls (n = 30). The study utilized histopathology, computer-assisted retinal vasculature analysis, optical coherence tomography angiography (OCTA), and NAM treatment. The main outcome measures included retinal vascular parameters in rats as assessed by AngioTool; retinal vasculature integrity in rats and humans as assessed by histopathology, antibody-staining, and ImageJ-based measurements; and retinal perfusion density (PD) and flux index in humans as assessed by OCTA. Results: A number of vessel parameters were altered in ocular hypertension/glaucoma compared to healthy controls. NAM treatment improved the retinal vasculature in ocular hypertensive rats, with an increase in mean vessel area, percentage area covered by vessels, total vessel length, total junctions, and junction density as assessed by AngioTool (all P < 0.05); vessel wall integrity as assessed by VE-cadherin antibody staining was also improved (P < 0.01). In humans, as assessed by OCTA, increases in PD in the optic nerve head and macula complete image (0.7%, P = 0.04 and 1.0%, P = 0.002, respectively) in healthy controls, and an increase in the temporal quadrant of the macula (0.7%, P = 0.02) in glaucoma patients was seen after NAM treatment. Conclusions: NAM can prevent retinal vascular damage in an animal model of glaucoma. After NAM treatment, glaucoma patients and healthy controls demonstrated a small increase in retinal vessel parameters as assessed by OCTA.
Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Disco Óptico , Animais , Humanos , Ratos , Angiofluoresceinografia/métodos , Disco Óptico/irrigação sanguínea , Estudos Prospectivos , Vasos Retinianos/patologia , Tomografia de Coerência Óptica/métodos , Campos VisuaisRESUMO
Neuroinflammation is recognized as a key component of neurodegenerative disease. In glaucoma, a common neurodegenerative disease and the leading cause of irreversible blindness, the evidence for neuroinflammation in patients is lacking. Animal models have demonstrated significant pro-inflammatory activation of resident glia in the retina, as well as influx of blood-derived monocytes and pro-inflammatory factors. Confirmation of this in human donor tissue has been challenging due to a lack of well-preserved and well-characterized post-mortem tissue. To address this we utilize archived, wax embedded eyes fixed immediately following enucleation from living glaucoma patients. We compared glaucoma to control eyes (enucleated for uveal melanoma where the tumor did not impact the central retina or optic nerve). We performed immunolabelling for neurodegenerative and glial markers (CD45, CD163, IBA1, GFAP, Vimentin) which were quantified by high-resolution light microscopy and image analysis in FIJI. Glaucoma eyes demonstrated significant neural loss consistent with advanced neurodegeneration. IBA1 and GFAP were significantly increased in the retina and optic nerve head of the glaucomatous eyes indicating that significant neuroinflammation had occurred which support findings in animal models. Inflammation is a treatable symptom of many diseases and as such, identification of earlier inflammatory processes in glaucoma could be important for potential future treatment options.
Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias , Nervo Óptico/patologia , Retina/patologiaRESUMO
Purpose: Glaucoma remains a leading cause of irreversible blindness worldwide. Animal glaucoma models replicate high intraocular pressure, a risk factor for glaucoma, to induce retinal ganglion cell (RGC) degeneration. We describe an inducible, magnetic bead model in the Brown Norway rat in which we are able to determine degeneration across multiple RGC compartments at a time point that is appropriate for investigating neurodegenerative events and potential treatment effects. Methods: We induced ocular hypertension through injection of magnetic microspheres into the anterior chamber of Brown Norway rats; un-operated (naïve) rats served as controls. Intraocular pressure was recorded, and eye diameter measurements were taken before surgery and at the terminal end points. We assessed RGC degeneration and vascular changes through immunofluorescence, and axon transport to terminal brain thalami through intravitreal injection of fluorophore-conjugated cholera toxin subunit ß. Results: We observed clinically relevant features of disease accompanying RGC cell somal, axonal, and dendritic loss. RGC axonal dysfunction persisted along the trajectory of the cell into the terminal brain thalami, with clear disruption at the optic nerve head. We also observed vascular compromise consistent with human disease, as well as an expansion of global eye size with ocular hypertension. Conclusions: The magnetic bead model in the Brown Norway rat recapitulates many clinically relevant disease features of human glaucoma, including degeneration across multiple RGC compartments. Eye expansion is likely a result of rodent scleral elasticity, and we caution that this should be considered when assessing retinal density measurements. Translational Relevance: This model offers a disease-relevant platform that will allow for assessment of glaucoma-relevant therapeutics.
Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Fenômenos Magnéticos , Ratos , Ratos Endogâmicos BNRESUMO
During retinal development, a physiologic hypoxia stimulates endothelial cell proliferation. The hypoxic milieu warrants retina vascularization and promotes the activation of several mechanisms aimed to ensure homeostasis and energy balance of both endothelial and retinal cells. Autophagy is an evolutionarily conserved catabolic system that contributes to cellular adaptation to a variety of environmental changes and stresses. In association with the physiologic hypoxia, autophagy plays a crucial role during development. Autophagy expression profile was evaluated in the developing retina from birth to post-natal day 18 of rat pups, using qPCR, western blotting and immunostaining methodologies. The rat post-partum developing retina displayed increased active autophagy during the first postnatal days, correlating to the hypoxic phase. In latter stages of development, rat retinal autophagy decreases, reaching a normalization between post-natal days 14-18, when the retina is fully vascularized and mature. Collectively, the present study elaborates on the link between hypoxia and autophagy, and contributes to further elucidate the role of autophagy during retinal development.
Assuntos
Autofagia , Regulação da Expressão Gênica , Retina/crescimento & desenvolvimento , Animais , Ratos , Ratos WistarRESUMO
BACKGROUND: As a majority of patients with choroidal melanoma do not undergo enucleation, tumour tissue for prognostic testing has to be obtained with alternate methods. Transvitreal incisional biopsies enable histological examination as well as immunohistochemical staining of BRCA1-associated protein-1 (BAP-1). METHODS: Fifty-nine patients diagnosed with choroidal melanoma in transvitreal biopsies between years 2003 and 2019 were included. Twenty-one of these patients subsequently underwent enucleation. The level of nuclear expression of BAP-1 in transvitreal biopsies and enucleations was evaluated and the concordance calculated. Metastasis-free survival and HR for metastasis were analysed. RESULTS: The mean tumour thickness and diameter at biopsy was 3.8 mm (SD 2.1) and 9.3 mm (SD 4.8), respectively. For biopsies, 37 of 59 tumours (63%) were classified as having high nuclear BAP-1 expression, and 22 (37%) as low. For enucleations, 13 of 21 tumours (62%) were classified as having high nuclear BAP-1 expression, and 8 (38%) as low. Eighty-six per cent of biopsies had an identical BAP-1 classification as the subsequent enucleation, yielding a Cohen's kappa coefficient of 0.70. Patients with low nuclear BAP-1 expression in transvitreal biopsies had a significantly shorter metastasis-free survival (p=0.001), with a size-adjusted Cox regression HR for metastasis of 13.0 (95% CI 3.1 to 54.4, p=0.0004). CONCLUSION: Loss of nuclear BAP-1 expression occurred in a large proportion of the small tumours included in this study. BAP-1 immunoreactivity in transvitreal incisional biopsies of choroidal melanoma is substantially concordant with immunoreactivity in enucleated specimens and identifies patients with poor metastasis-free survival.
Assuntos
Neoplasias da Coroide/metabolismo , Corioide/patologia , Enucleação Ocular , Melanoma/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina Tiolesterase/biossíntese , Biomarcadores Tumorais/biossíntese , Biópsia , Corioide/metabolismo , Neoplasias da Coroide/diagnóstico , Neoplasias da Coroide/cirurgia , Feminino , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/cirurgia , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Purpose: Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods: Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results: After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions: These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance: The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.
Assuntos
Glaucoma , Hipertensão Ocular , Animais , Modelos Animais de Doenças , Microglia , Ratos , Células Ganglionares da RetinaRESUMO
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma.
Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Humanos , Neuroproteção , Niacinamida , Células Ganglionares da RetinaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
In vitro differentiation of human pluripotent stem cells into functional retinal pigment epithelial (RPE) cells provides a potentially unlimited source for cell based reparative therapy of age-related macular degeneration. Although the inherent pigmentation of the RPE cells have been useful to grossly evaluate differentiation efficiency and allowed manual isolation of pigmented structures, accurate quantification and automated isolation has been challenging. To address this issue, here we perform a comprehensive antibody screening and identify cell surface markers for RPE cells. We show that these markers can be used to isolate RPE cells during in vitro differentiation and to track, quantify and improve differentiation efficiency. Finally, these surface markers aided to develop a robust, direct and scalable monolayer differentiation protocol on human recombinant laminin-111 and -521 without the need for manual isolation.
Assuntos
Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Neurônios/metabolismo , Pigmentos da Retina/metabolismo , Animais , Antígeno CD56 , Células-Tronco Embrionárias , Humanos , Laminina/genética , Degeneração Macular/metabolismo , Coelhos , Epitélio Pigmentado da Retina/metabolismoRESUMO
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells could serve as a replacement therapy in advanced stages of age-related macular degeneration. However, allogenic hESC-RPE transplants trigger immune rejection, supporting a strategy to evade their immune recognition. We established single-knockout beta-2 microglobulin (SKO-B2M), class II major histocompatibility complex transactivator (SKO-CIITA) and double-knockout (DKO) hESC lines that were further differentiated into corresponding hESC-RPE lines lacking either surface human leukocyte antigen class I (HLA-I) or HLA-II, or both. Activation of CD4+ and CD8+ T-cells was markedly lower by hESC-RPE DKO cells, while natural killer cell cytotoxic response was not increased. After transplantation of SKO-B2M, SKO-CIITA, or DKO hESC-RPEs in a preclinical rabbit model, donor cell rejection was reduced and delayed. In conclusion, we have developed cell lines that lack both HLA-I and -II antigens, which evoke reduced T-cell responses in vitro together with reduced rejection in a large-eyed animal model.
Assuntos
Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Epitélio Pigmentado da Retina/citologia , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Citotoxicidade Imunológica , Xenoenxertos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Imunomodulação , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Linfócitos T/metabolismo , Transativadores/metabolismo , Microglobulina beta-2/metabolismoRESUMO
PURPOSE: The aim of this study was to compare conventional and novel size estimation methods' ability to predict survival in uveal melanoma (UM). METHODS: The study was designed as a retrospective consecutive chart review of patients with UM, enucleated between the years 1984 and 1993. Area and volume were estimated based on the largest histopathological cross-section, the second centroid theorem of Pappus and digital image analysis, correlated to overall and relative survival. RESULTS: Of 168 patients analysed, 20 (12%) of tumours were categorized as T1, 47 (28%) as T2, 67 (40%) as T3 and 19 (11%) as T4 (15 N/a). A total of 91 tumours with complete survival and measurement data were included and recategorized into small, medium and large volume groups. Increased separation of overall survival was seen compared with current American Joint Committee on Cancer T categories. Difference between the large and small volume groups was 8.6 years (p = 0.001), compared to a difference of 5.6 years (p = 0.091) between T1 and T4. Hazard ratio for all-cause mortality in the large versus small volume group was 2.6 compared to 1.9 for T4 versus T1. Relative survival rates for small, medium and large volumes were 62, 44 and 31% at 10 years, versus 50, 45, 56 and 0% for T1, T2, T3 and T4. CONCLUSION: This study provides evidence that a novel UM volume estimation method might offer a practical and cost-efficient alternative to improve the prognostic value intrinsic to a tumour's size.
Assuntos
Técnicas de Diagnóstico Oftalmológico , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/patologia , Estadiamento de Neoplasias/métodos , Neoplasias Uveais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Suécia/epidemiologia , Carga Tumoral , Neoplasias Uveais/mortalidadeRESUMO
Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis, inflammation, gliosis, and macrophage infiltration were upregulated in both retinas and retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness, gliosis, and macrophage infiltration were counteracted by the diet supplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD.