Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Cell Rep ; 39(9): 1185-1197, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32638075

RESUMO

KEY MESSAGE: A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.


Assuntos
Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Triticale/metabolismo , Brachypodium/genética , Cisteína , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Transporte Proteico , Triticale/citologia , Triticale/genética
2.
BMC Genomics ; 19(1): 178, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506469

RESUMO

BACKGROUND: The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. RESULTS: The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. CONCLUSIONS: A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Lolium/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Triticum/genética , Sequência de Aminoácidos , Biologia Computacional , Bases de Dados Factuais , Genoma de Planta , Hordeum/metabolismo , Lolium/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Família Multigênica , Filogenia , Alinhamento de Sequência , Triticum/metabolismo
3.
Planta ; 245(2): 385-396, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27787603

RESUMO

MAIN CONCLUSION: In this report, we demonstrate that Brachypodium distachyon could serve as a relatively high throughput in planta functional assay system for Triticeae anther-specific gene promoters. There remains a vast gap in our knowledge of the promoter cis-acting elements responsible for the transcriptional regulation of Triticeae anther-specific genes. In an attempt to identify conserved cis-elements, 14 pollen-specific and 8 tapetum-specific Triticeae putative promoter sequences were analyzed using different promoter sequence analysis tools. Several cis-elements were found to be enriched in these sequences and their possible role in gene expression regulation in the anther is discussed. Despite the fact that potential cis-acting elements can be identified within putative promoter sequence datasets, determining whether particular promoter sequences can in fact direct proper tissue-specific and developmental gene expression still needs to be confirmed via functional assays preferably performed in closely related plants. Transgenic functional assays with Triticeae species remain challenging and Brachypodium distachyon may represent a suitable alternative. The promoters of the triticale pollen-specific genes group 3 pollen allergen (PAL3) and group 4 pollen allergen (PAL4), as well as the tapetum-specific genes chalcone synthase-like 1 (CHSL1), from wheat and cysteine-rich protein 1 (CRP1) from triticale were fused to the green fluorescent protein gene (GFP) and analyzed in transgenic Brachypodium. This report demonstrates that this model species could serve to accelerate the functional analysis of Triticeae anther-specific gene promoters.


Assuntos
Brachypodium/genética , Pólen/genética , Regiões Promotoras Genéticas , Aciltransferases/genética , Aciltransferases/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poaceae/genética , Pólen/crescimento & desenvolvimento
4.
BMC Genomics ; 16: 281, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25886913

RESUMO

BACKGROUND: One of the most important evolutionary processes in plants is polyploidization. The combination of two or more genomes in one organism often initially leads to changes in gene expression and extensive genomic reorganization, compared to the parental species. Hexaploid triticale (x Triticosecale) is a synthetic hybrid crop species generated by crosses between T. turgidum and Secale cereale. Because triticale is a recent synthetic polyploid it is an important model for studying genome evolution following polyploidization. Molecular studies have demonstrated that genomic sequence changes, consisting of sequence elimination or loss of expression of genes from the rye genome, are common in triticale. High-throughput DNA sequencing allows a large number of genes to be surveyed, and transcripts from the different homeologous copies of the genes that have high sequence similarity can be better distinguished than hybridization methods previously employed. RESULTS: The expression levels of 23,503 rye cDNA reference contigs were analyzed in 454-cDNA libraries obtained from anther, root and stem from both triticale and rye, as well as in five 454-cDNA data sets created from triticale seedling shoot, ovary, stigma, pollen and seed tissues to identify the classes of rye genes silenced or absent in the recent synthetic hexaploid triticale. Comparisons between diploid rye and hexaploid triticale detected 112 rye cDNA contigs (~0.5%) that were totally undetected by expression analysis in all triticale tissues, although their expression was relatively high in rye tissues. Non-expressed rye genes were found to be strikingly less similar to their closest BLASTN matches in the wheat genome or in the other Triticum genomes than a test set of 200 random rye genes. Genes that were not detected in the RNA-seq data were further characterized by testing for their presence in the triticale genome by PCR using genomic DNA as a template. CONCLUSION: Genes with low similarity between rye sequences and their closest matches in the Triticum genome have a higher probability to be repressed or absent in the allopolyploid genome.


Assuntos
Genes de Plantas , Poliploidia , Secale/genética , Transcriptoma , Triticale/genética , Sequenciamento de Nucleotídeos em Larga Escala , Secale/metabolismo , Triticale/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Plant J ; 74(6): 971-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23581995

RESUMO

Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.


Assuntos
Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Planta/genética , Transcriptoma , Triticum/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , RNA Mensageiro/genética , RNA de Plantas/genética , Reprodução , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
6.
BMC Genomics ; 15: 239, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24673767

RESUMO

BACKGROUND: The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the α-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family. RESULTS: A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented. CONCLUSIONS: The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Genes de Plantas , Proteínas de Plantas/genética , Poaceae/genética , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/metabolismo , Mapeamento de Sequências Contíguas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Poaceae/classificação , Análise de Sequência de RNA
7.
Mol Ecol Resour ; : e13983, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840549

RESUMO

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.

8.
Methods Mol Biol ; 2659: 23-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249882

RESUMO

We are reporting on the utilization of high-throughput sequencing and different sequencing analysis tools to delineate identification of different isolates of the stripe rust fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Different approaches are shown: utilization of rDNA sequences and random sequences that may be very useful to make sure that isolates belong to Pst and to distinguished closely related isolates. Identification of unique/lost sequences could lead to the identification of effectors associated with specific isolates.


Assuntos
Basidiomycota , Puccinia , Mapeamento Cromossômico , Puccinia/genética , Basidiomycota/genética , Genômica , Doenças das Plantas/microbiologia
9.
Plant Mol Biol ; 79(1-2): 101-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367549

RESUMO

Analysis of Triticale (×Triticosecale Wittmack cv. AC Alta) mature pollen proteins quickly released upon hydration was performed using two-dimensional gel electrophoresis followed by mass spectrometry. A total of 17 distinct protein families were identified and these included expansins, profilins, and various enzymes, many of which are pollen allergens. The corresponding genes were obtained and expression studies revealed that the majority of these genes were only expressed in developing anthers and pollen. Some genes including glucanase, glutathione peroxidase, glutaredoxin, and a profilin were found to be widely expressed in different reproductive and vegetative tissues. Group 11 pollen allergens, polygalacturonase, and actin depolymerizing factor were characterized for the first time in the Triticeae. This study represents a distinctive combination of proteomic and molecular analyses of the major cereal pollen proteins released upon hydration and therefore at the forefront of pollen-stigma interactions.


Assuntos
Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Proteômica/métodos , Água/metabolismo , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Sequência de Aminoácidos , Northern Blotting , DNA Complementar/genética , Grão Comestível/enzimologia , Grão Comestível/genética , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Especificidade de Órgãos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Pólen/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Sci Rep ; 12(1): 5793, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388069

RESUMO

Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e-04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.


Assuntos
Estudo de Associação Genômica Ampla , Secale , Ligação Genética , Fenótipo , Desenvolvimento Vegetal , Secale/metabolismo
11.
Theor Appl Genet ; 122(8): 1547-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21394532

RESUMO

Triticale (X Triticosecale Wittm.) is a hybrid derived by crossing wheat (Triticum sp.) and rye (Secale sp.). Till date, only a limited number of simple sequence repeat (SSRs) markers have been used in triticale molecular analyses and there is a need to identify dedicated high-throughput molecular markers to better exploit this crop. The objective of this study was to develop and evaluate diversity arrays technology (DArT) markers in triticale. DArT marker technology offers a high level of multiplexing. Development of new markers from triticale accessions was combined with mining the large collection of previously developed markers in rye and wheat. Three genotyping arrays were used to analyze a collection of 144 triticale accessions. The polymorphism level ranged from 8.6 to 23.8% for wheat and rye DArT markers, respectively. Among the polymorphic markers, rye markers were the most abundant (3,109) followed by wheat (2,214) and triticale (719). The mean polymorphism information content values were 0.34 for rye DArT markers and 0.37 for those from triticale and wheat. High correlation was observed between similarity matrices derived from rye, triticale, wheat and combined marker sets, as well as for the cophenetic values matrices. Cluster analysis revealed genetic relationships among the accessions consistent with the agronomic and pedigree information available. The newly developed triticale DArT markers as well as those originated from rye and wheat provide high quality markers that can be used for diversity analyses and might be exploited in a range of molecular breeding and genomics applications in triticale.


Assuntos
Grão Comestível/genética , Marcadores Genéticos/genética , Variação Genética , Polimorfismo Genético/genética , Europa (Continente) , Genótipo , Processamento de Imagem Assistida por Computador , Análise em Microsséries , América do Norte , Linhagem , Especificidade da Espécie
12.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834817

RESUMO

Overwintering cereals accumulate low temperature tolerance (LTT) during cold acclimation in the autumn. Simultaneously, the plants adjust to the colder season by making developmental changes at the shoot apical meristem. These processes lead to higher winter hardiness in winter rye varieties (Secale cereale L.) adapted to Northern latitudes as compared to other cereal crops. To dissect the winter-hardiness trait in rye, a panel of 96 genotypes of different origins and growth habits was assessed for winter field survival (WFS), LTT, and six developmental traits. Best Linear Unbiased Estimates for WFS determined from five field trials correlated strongly with LTT (r = 0.90, p < 0.001); thus, cold acclimation efficiency was the major contributor to WFS. WFS also correlated strongly (p < 0.001) with final leaf number (r = 0.80), prostrate growth habit (r = 0.61), plant height (r = 0.34), but showed weaker associations with top internode length (r = 0.30, p < 0.01) and days to anthesis (r = 0.25, p < 0.05). The heritability estimates (h2) for WFS-associated traits ranged from 0.45 (prostrate growth habit) to 0.81 (final leaf number) and were overall higher than for WFS (h2 = 0.48). All developmental traits associated with WFS and LTT are postulated to be regulated by phytohormone levels at shoot apical meristem.

13.
Mol Plant Microbe Interact ; 23(12): 1619-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20822422

RESUMO

Ustilago hordei interactions on coleoptiles of barley host cultivars Odessa (compatible), Hannchen (incompatible, carrying the Ruh1 resistance gene), and on nonhost Neepawa wheat were studied using light and fluorescent microscopy. Autofluorescence, mainly caused by callose accumulation, was more rapidly expressed in nonhost wheat at 30 to 72 h compared with the incompatible reaction between 72 and 144 h. Microarray results demonstrated that more than half of the 893 differentially regulated genes were observed in Neepawa; of these genes, 45% fell into the defense- and stress-related classes in Neepawa compared with 25 and 37% in Odessa and Hannchen, respectively. Their expression coincided with the early morphological defense responses observed and were associated with the jasmonic acid and ethylene (JA/ET) signaling pathway. Expression patterns in Odessa and Hannchen were similar, involving fewer genes and coinciding with later morphological defense responses of these varieties. Although no visible hypersensitive response was apparent in Hannchen or Neepawa, specific upregulation of hypersensitivity-related proteins was observed, such as beta-VPE at 48 h. Expression levels of the callose synthase gene were closely associated with callose accumulation. Differential responses in defense-gene expression among disease reaction types included upregulation of PR-1.1b and downregulation of a nonspecific lipid transfer protein in the incompatible and compatible interactions, respectively. Transcript levels of EDS1 and PAD4, involved in both basal resistance and R-mediated resistance to avirulent pathogens, were up-regulated during both nonhost and Ruh1-mediated resistance. Application of methyl-jasmonate, salicylic acid and ET to leaves revealed that only PR1.1b is strongly up-regulated by all three compounds, while the majority of the defense-related genes are only slightly up-regulated by these signaling compounds.


Assuntos
Hordeum/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ustilago/fisiologia , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno , Oxilipinas , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise Serial de Proteínas , Ácido Salicílico
14.
J Integr Plant Biol ; 52(7): 602-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590991

RESUMO

Triticale (x Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source. Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.


Assuntos
Apoptose/fisiologia , Grão Comestível/metabolismo , Endosperma/citologia , Endosperma/metabolismo , Amido/biossíntese , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/metabolismo , Apoptose/genética , Fragmentação do DNA , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/ultraestrutura , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Microscopia Eletrônica de Varredura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Amido/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo
15.
Plant Physiol Biochem ; 155: 535-548, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836199

RESUMO

As one of the largest protein families in plants, F-box proteins are involved in many important cellular processes. Until now, a limited number of investigations have been conducted on wheat F-box genes due to its variable structure and large and polyploid genome. Classification, identification, structural analysis, evolutionary relationship, and chromosomal distribution of some wheat F-box genes are described in the present study. A total number of 1013 potential F-box proteins which are encoded by 409 genes was identified in wheat, and classified into 12 subfamilies based on their C-terminal domain structures. Furthermore, proteins with identical or similar C-terminal domain were clustered together. Location of 409 F-box genes was identified on all 21 wheat chromosomes but showed an uneven distribution. Segmental duplication was the main reason for the increase in the number of wheat F-box genes. Gene expression analysis based on digital PCR showed that most of the F-box genes were highly expressed in the later development stages of wheat, including the formation of spike, grain, flag leaf, and participated in drought stress (DS), heat stress (HS), and their combination (HD). Of the nine F-box genes we investigated using quantitative PCR (qPCR) following fungal pathogen infection, five were involved in wheat resistance to the infection by leaf rust pathogen and one in the susceptible response. These results provide important information on wheat F-box proteins for further functional studies, especially the proteins that played roles in response to heat and drought stresses and leaf rust pathogen infection.


Assuntos
Proteínas F-Box/genética , Doenças das Plantas/genética , Puccinia/patogenicidade , Triticum/genética , Genes de Plantas , Família Multigênica , Doenças das Plantas/microbiologia , Triticum/microbiologia
16.
Clin Immunol ; 133(1): 52-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19604724

RESUMO

The mechanisms of therapeutic action of IVIg are still unclear in most autoimmune and inflammatory diseases. IVIg have been shown to bind to a variety of human proteins including BAFF, amyloid beta peptide and GM-CSF. It has been suggested that this autoreactivity could contribute to the therapeutic immunomodulatory effects of IVIg. In this work, we showed that native IgG purified from plasma under non-denaturing conditions were much less autoreactive than IVIg. However the native IgG autoreactivity with BAFF, amyloid beta peptide and GM-CSF was significantly increased by short incubation under the slightly denaturing conditions used during industrial plasma fractionation. We conclude that the relatively mild conditions used in industrial plasma fractionation are sufficiently denaturing to activate a significant amount of cryptic autoreactive plasma IgG which could be involved not only in the therapeutic immunomodulatory effects of IVIg but also in the adverse "allergic" reactions often observed in IVIg-infused patients.


Assuntos
Peptídeos beta-Amiloides/imunologia , Fator Ativador de Células B/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunoglobulina G/imunologia , Imunoglobulinas Intravenosas/imunologia , Etanol/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Imunoglobulinas Intravenosas/química , Desnaturação Proteica , Soro/química , Soro/imunologia
17.
Genome ; 52(7): 658-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19767896

RESUMO

Complete genomic and cDNA sequences of the Waxy gene encoding granule-bound starch synthase I (GBSSI) were isolated from the rye genome and characterized. The full-length rye Waxy genomic DNA and cDNA are 2767 bp and 1815 bp, respectively. The genomic sequence has 11 exons interrupted by 10 introns. The rye Waxy gene is GC-rich, with a higher GC frequency in the coding region, especially in the third position of the codons. Exon regions of the rye Waxy gene are more conserved than intron regions when compared with the homologous sequences of other cereals. The mature rye GBSSI proteins share more than 95% sequence identity with their homologs in wheat and barley. A phylogenetic tree based on sequence comparisons of available plant GBSSI proteins shows the evolutionary relationship among Waxy genes from rye and other plant genomes. The identification of the rye Waxy gene will enable the manipulation of starch metabolism in rye and triticale.


Assuntos
Genes de Plantas , Secale/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , DNA de Plantas/química , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintase do Amido/genética , Triticum/genética , Triticum/metabolismo
18.
Mol Plant Microbe Interact ; 21(3): 346-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18257684

RESUMO

This study simultaneously considered the phylogeny, fatty acid binding ability, and fungal toxicity of a large number of monocot nonspecific lipid transfer proteins (ns-LTP). Nine novel full-length wheat ns-LTP1 clones, all possessing coding sequences of 348 bp, isolated from abiotic- and biotic-stressed cDNA libraries from aerial tissues, exhibited highly conserved coding regions with 78 to 99 and 71 to 100% identity at the nucleotide and amino acid levels, respectively. Phylogenetic analyses revealed two major ns-LTP families in wheat. Eight wheat ns-LTP genes from different clades were cloned into the expression vector pPICZalpha and transformed into Pichia pastoris. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and in vitro lipid binding activity assay confirmed that the eight ns-LTP were all successfully expressed and capable of in vitro binding fatty acid molecules. A comparative in vitro study on the toxicity of eight wheat ns-LTP to mycelium growth or spore germination of eight wheat pathogens and three nonwheat pathogens revealed differential toxicities among different ns-LTP. Values indicating 50% inhibition of fungal growth or spore germination of three selected ns-LTP against six fungi ranged from 1 to 7 microM. In vitro lipid-binding activity of ns-LTP was not correlated with their antifungal activity. Using the fluorescent probe SYTOX Green as an indicator of fungal membrane integrity, the in vitro toxicity of wheat ns-LTP was associated with alteration in permeability of fungal membranes.


Assuntos
Antifúngicos/toxicidade , Proteínas de Transporte/metabolismo , Proteínas de Transporte/toxicidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/toxicidade , Triticum/metabolismo , Antifúngicos/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Filogenia , Proteínas de Plantas/genética
19.
Biochem Biophys Res Commun ; 373(3): 350-4, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18571500

RESUMO

A histidine-tagged recombinant N-terminal fragment of type-1 mouse liver diacylglycerol acyltransferase (DGAT; EC 2.3.1.20), MmDGAT1(1-95)His6, was expressed in Escherichia coli, and used to investigate possible acyl-CoA-binding properties. Analysis of the purified fragment by MALDI-TOF mass spectrometry revealed a polypeptide with molecular mass of about 11 kDa which was consistent with the calculated molecular mass based on the deduced amino acid sequence. Lipidex-1000 binding assays indicated that MmDGAT1(1-95)His(6) interacted with long chain fatty acyl-CoAs similar to observations on DGAT1 from oilseed rape (Brassica napus). Binding, as a function of acyl-CoA concentration, differed for palmitoyl (16:0), stearoyl (18:0), and erucoyl (cisDelta(13)22:1)-CoA. Binding of stearoyl- or erucoyl-CoA to MmDGAT1(1-95)His(6) as a function of acyl-CoA concentration, however, was sigmoid and displayed positive cooperativity suggesting that MmDGAT1 may be subject to allosteric modulation by acyl-CoAs. An intra-polypeptide segment within the N-terminal region of MmDGAT1 contained remnants of an acyl-CoA-binding signature initially identified in plant DGAT1. The acyl-CoA-binding site in mammalian DGAT1 could represent a potential target for therapeutic interventions for disorders such as type-2 diabetes and obesity.


Assuntos
Acil Coenzima A/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Acil Coenzima A/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Brassica napus/enzimologia , Brassica napus/genética , Sequência Conservada , Dextranos/química , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/genética , Escherichia coli/genética , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Exp Bot ; 59(13): 3543-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18703491

RESUMO

Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa