Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(11): 5907-5925, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32383760

RESUMO

Mammalian antibody switch regions (∼1500 bp) are composed of a series of closely neighboring G4-capable sequences. Whereas numerous structural and genome-wide analyses of roles for minimal G4s in transcriptional regulation have been reported, Long G4-capable regions (LG4s)-like those at antibody switch regions-remain virtually unexplored. Using a novel computational approach we have identified 301 LG4s in the human genome and find LG4s prone to mutation and significantly associated with chromosomal rearrangements in malignancy. Strikingly, 217 LG4s overlap annotated enhancers, and we find the promoters regulated by these enhancers markedly enriched in G4-capable sequences suggesting G4s facilitate promoter-enhancer interactions. Finally, and much to our surprise, we also find single-stranded loops of minimal G4s within individual LG4 loci are frequently highly complementary to one another with 178 LG4 loci averaging >35 internal loop:loop complements of >8 bp. As such, we hypothesized (then experimentally confirmed) that G4 loops within individual LG4 loci directly basepair with one another (similar to characterized stem-loop kissing interactions) forming a hitherto undescribed, higher-order, G4-based secondary structure we term a 'G4 Kiss or G4K'. In conclusion, LG4s adopt novel, higher-order, composite G4 structures directly contributing to the inherent instability, regulatory capacity, and maintenance of these conspicuous genomic regions.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Guanina , Conformação de Ácido Nucleico , Pareamento de Bases , Quadruplex G , Rearranjo Gênico , Variação Genética , Genômica , Guanina/análise , Humanos , Saccharomyces cerevisiae/genética , Duplicações Segmentares Genômicas , Deleção de Sequência
2.
J Allergy Clin Immunol ; 145(1): 312-323, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31627909

RESUMO

BACKGROUND: Ozone (O3) inhalation elicits airway inflammation and impairs treatment responsiveness in asthmatic patients. The underlying immune mechanisms have been difficult to study because of the lack of relevant experimental models. Rhesus macaques spontaneously have asthma and have a similar immune system to human subjects. OBJECTIVES: We sought to investigate mucosal immune changes after O3 inhalation in a clinically relevant nonhuman primate asthma model and to study the effects of an antioxidant synthetic lignan (synthetic secoisolariciresinol diglucoside [LGM2605]). METHODS: A cohort of macaques (n = 17) previously characterized with airway hyperreactivity (AHR) to methacholine was assessed (day 1). Macaques were treated (orally) with LGM2605 (25 mg/kg) or placebo twice per day for 7 days, exposed to 0.3 ppm O3 or air for 6 hours (on day 7), and studied 12 hours later (day 8). Lung function, blood and bronchoalveolar lavage (BAL) fluid immune cell profile, and bronchial brushing and blood cell mRNA expression were assessed. RESULTS: O3 induced significant BAL fluid neutrophilia and eosinophilia and increased AHR and expression of IL6 and IL25 mRNA in the airway epithelium together with increased BAL fluid group 2 innate lymphoid cell (ILC2s), CD1c+ myeloid dendritic cell, and CD4+ T-cell counts and diminished surfactant protein D expression. Although LGM2605 attenuated some of the immune and inflammatory changes, it completely abolished O3-induced AHR. CONCLUSION: ILC2s, CD1c+ myeloid dendritic cells, and CD4+ T cells are selectively involved in O3-induced asthma exacerbation. The inflammatory changes were partially prevented by antioxidant pretreatment with LGM2605, which had an unexpectedly disproportionate protective effect on AHR.


Assuntos
Antioxidantes/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Ozônio/toxicidade , Animais , Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Macaca mulatta , Masculino , Células Mieloides/imunologia
3.
Mutagenesis ; 34(3): 289-297, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31169295

RESUMO

Repetitive DNA sequences support the formation of structures that can interrupt replication and repair, leading to breaks and mutagenesis. One particularly stable structure is G-quadruplex (G4) DNA, which is four-stranded and formed from tandemly repetitive guanine bases. When folded within a template, G4 interferes with DNA synthesis. Similar to non-duplex structures, DNA base lesions can also halt an advancing replication fork, but the Y-family polymerases solve this problem by bypassing the damage. In order to better understand how guanine-rich DNA is replicated, we have investigated the activity of the model Y-family polymerase, Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), on guanine-rich templates in vitro. We find that Dpo4 progression on templates containing either a single GC-rich hairpin or a G4 DNA structure is greatly reduced and synthesis stalls at the structure. Human polymerase eta (hPol eta) showed the same pattern of stalling at G4; however, and in contrast to Klenow, hPol eta and Dpo4 partially synthesise into the guanine repeat. Substitution of the nucleotide selectivity residue in Dpo4 with alanine permitted ribonucleotide incorporation on unstructured templates, but this further reduced the ability of Dpo4 to synthesise across from the guanine repeats. The advancement of Dpo4 on G4 templates was highest when the reaction was supplied with only deoxycytidine triphosphate, suggesting that high-fidelity synthesis is favoured over misincorporation. Our results are consistent with a model where the Y-family polymerases pause upon encountering G4 structures but have an ability to negotiate some synthesis through tetrad-associated guanines. This suggests that the Y-family polymerases reduce mutagenesis by catalysing the accurate replication of repetitive DNA sequences, but most likely in concert with additional replication and structure resolution activities.


Assuntos
DNA Polimerase beta/química , DNA/química , Quadruplex G , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética , Domínio Catalítico , Humanos
4.
Mutagenesis ; 31(4): 385-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26671821

RESUMO

Genome sequences that contain tandem repeats of guanine can form stable four-stranded structures known as G-quadruplex, or G4 DNA. While the molecular mechanisms are not fully defined, such guanine-rich loci are prone to mutagenesis and recombination. Various repair pathways function to reduce the potential for genome instability by correcting base damage and replication errors; however, it is not yet fully defined how well these processes function at G4 DNA. One frequent form of base damage occurs from cytidine deamination, resulting in deoxyuracil and UG mismatches. In duplex and single-stranded DNA, uracil bases are recognised and excised by uracil glycosylases. Here, we tested the efficiency of uracil glycosylase activity in vitro on uracil bases located directly adjacent to guanine repeats and G4 DNA. We show that uracil excision by bacterial UDG and human hUNG2 is reduced at uracils positioned directly 5' or 3' of a guanine tetrad. Control reactions using oligonucleotides disrupted for G4 formation or reaction conditions that do not favour G4 formation resulted in full uracil excision activity. Based on these in vitro results, we suggest that folding of guanine-rich DNA into G4 DNA results in a DNA conformation that is resistant to uracil glycosylase-initiated repair and this has the potential to increase the risk of instability at guanine repeats in the genome.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , DNA/metabolismo , Quadruplex G , Uracila-DNA Glicosidase/metabolismo , Uracila/metabolismo , Sequência de Bases , DNA/química , Reparo do DNA , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Guanina , Humanos , Mutagênese
5.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38371318

RESUMO

Autosomal dominant polycystic kidney disease results from the loss of the PKD1 gene product, polycystin 1. Regulatory mechanisms are unresolved, but an apparent G/C sequence bias in the gene is consistent with co-transcriptional R-loop formation. R-loops regulate gene expression and stability, and they form when newly synthesized RNA extensively pairs with the template DNA to displace the non-template strand. In this study, we tested two human PKD1 sequences for co-transcriptional R-loop formation in vitro. We observed RNase H-sensitive R-loop formation in intron 1 and 22 sequences, but only in one transcriptional orientation. Therefore, R-loops may participate in PKD1 expression or stability.

7.
BMC Mol Biol ; 13: 23, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747774

RESUMO

BACKGROUND: Guanine quadruplex (G4 DNA) is a four-stranded structure that contributes to genome instability and site-specific recombination. G4 DNA folds from sequences containing tandemly repetitive guanines, sequence motifs that are found throughout prokaryote and eukaryote genomes. While some cellular activities have been identified with binding or processing G4 DNA, the factors and pathways governing G4 DNA metabolism are largely undefined. Highly conserved mismatch repair factors have emerged as potential G4-responding complexes because, in addition to initiating heteroduplex correction, the human homologs bind non-B form DNA with high affinity. Moreover, the MutS homologs across species have the capacity to recognize a diverse range of DNA pairing variations and damage, suggesting a conserved ability to bind non-B form DNA. RESULTS: Here, we asked if E. coli MutS and a heteroduplex recognition mutant, MutS F36A, were capable of recognizing and responding to G4 DNA structures. We find by mobility shift assay that E. coli MutS binds to G4 DNA with high affinity better than binding to G-T heteroduplexes. In the same assay, MutS F36A failed to recognize G-T mismatched oligonucleotides, as expected, but retained an ability to bind to G4 DNA. Association with G4 DNA by MutS is not likely to activate the mismatch repair pathway because nucleotide binding did not promote release of MutS or MutS F36A from G4 DNA as it does for heteroduplexes. G4 recognition activities occur under physiological conditions, and we find that M13 phage harboring G4-capable DNA poorly infected a MutS deficient strain of E. coli compared to M13mp18, suggesting functional roles for mismatch repair factors in the cellular response to unstable genomic elements. CONCLUSIONS: Taken together, our findings demonstrate that E. coli MutS has a binding activity specific for non-B form G4 DNA, but such binding appears independent of canonical heteroduplex repair activation.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Quadruplex G , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Escherichia coli/isolamento & purificação , Estrutura Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/isolamento & purificação , Oligonucleotídeos/genética , Especificidade da Espécie
8.
BMC Cancer ; 11: 347, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21831295

RESUMO

BACKGROUND: Activation Induced cytidine Deaminase (AID) targets the immunoglobulin genes of activated B cells, where it converts cytidine to uracil to induce mutagenesis and recombination. While essential for immunoglobulin gene diversification, AID misregulation can result in genomic instability and oncogenic transformation. This is classically illustrated in Burkitt's lymphoma, which is characterized by AID-induced mutation and reciprocal translocation of the c-MYC oncogene with the IgH loci. Originally thought to be B cell-specific, AID now appears to be misexpressed in several epithelial cancers, raising the specter that AID may also participate in non-B cell carcinogenesis. METHODS: The mutagenic potential of AID argues for the existence of cellular regulators capable of repressing inappropriate AID expression. MicroRNAs (miRs) have this capacity, and we have examined the publically available human AID EST dataset for miR complementarities to the human AID 3'UTR. In this work, we have evaluated the capacity of two candidate miRs to repress human AID expression in MCF-7 breast carcinoma cells. RESULTS: We have discovered moderate miR-155 and pronounced miR-93 complementary target sites encoded within the human AID mRNA. Luciferase reporter assays indicate that both miR-93 and miR-155 can interact with the 3'UTR of AID to block expression. In addition, over-expression of either miR in MCF-7 cells reduces endogenous AID protein, but not mRNA, levels. Similarly indicative of AID translational regulation, depletion of either miR in MCF-7 cells increases AID protein levels without concurrent increases in AID mRNA. CONCLUSIONS: Together, our findings demonstrate that miR-93 and miR-155 constitutively suppress AID translation in MCF-7 cells, suggesting widespread roles for these miRs in preventing genome cytidine deaminations, mutagenesis, and oncogenic transformation. In addition, our characterization of an obscured miR-93 target site located within the AID 3'UTR supports the recent suggestion that many miR regulations have been overlooked due to the prevalence of truncated 3'UTR annotations.


Assuntos
Citidina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citidina Desaminase/metabolismo , Feminino , Células HEK293 , Humanos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
BMC Mol Biol ; 9: 94, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18954457

RESUMO

BACKGROUND: Deamination of cytosine to produce uracil is a common and potentially mutagenic lesion in genomic DNA. U*G mismatches occur spontaneously throughout the genome, where they are repaired by factors associated with the base excision repair pathway. U*G mismatches are also the initiating lesion in immunoglobulin gene diversification, where they undergo mutagenic processing by redundant pathways, one dependent upon uracil excision and the other upon mismatch recognition by MutS alpha. While UNG is well known to initiate repair of uracil in DNA, the ability of MutS alpha to direct correction of this base has not been directly demonstrated. RESULTS: Using a biochemical assay for mismatch repair, we show that MutS alpha can promote efficient and faithful repair of U*G mismatches, but does not repair U*A pairs in DNA. This contrasts with UNG, which readily excises U opposite either A or G. Repair of U*G by MutS alpha depends upon DNA polymerase delta (pol delta), ATP, and proliferating cell nuclear antigen (PCNA), all properties of canonical mismatch repair. CONCLUSION: These results show that faithful repair of U*G can be carried out by either the mismatch repair or base excision repair pathways. Thus, the redundant functions of these pathways in immunoglobulin gene diversification reflect their redundant functions in faithful repair. Faithful repair by either pathway is comparably efficient, suggesting that mismatch repair and base excision repair share the task of faithful repair of genomic uracil.


Assuntos
Reparo de Erro de Pareamento de DNA , Genoma Humano/genética , Uracila/metabolismo , Adenina , Linfócitos B/metabolismo , Extratos Celulares , Linhagem Celular , Núcleo Celular/enzimologia , DNA Circular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Guanina , Humanos , Mutação/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Especificidade por Substrato , Uracila-DNA Glicosidase/metabolismo
10.
Curr Biol ; 15(5): 470-4, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15753043

RESUMO

Immunoglobulin class switch recombination joins a new constant (C) region to the rearranged and expressed heavy chain variable (VDJ) region in antigen-activated B cells (Figure 1A) (reviewed in [1, 2]). Switch recombination is activated by transcription of intronic, G-rich and repetitive switch (S) regions and produces junctions that are heterogeneous in sequence and position in the S regions. Switch recombination depends upon the B cell-specific cytidine deaminase, AID, and conserved DNA repair factors, including the mismatch repair heterodimer, MutSalpha (MSH2/MSH6). In mice, ablation of Msh2 or Msh6, but not Msh3, decreases levels of switch recombination and diminishes heterogeneity of switch junctions [3-7]. Here, we demonstrate that MSH2 associates with transcribed S regions in primary murine B cells activated for switch recombination. Electron microscopic imaging reveals that MutSalpha binds in vitro to DNA structures formed within transcribed S regions and mediates their synapsis. MutSalpha binds with high affinity to G4 DNA formed upon transcription of the S regions and also binds to U.G mismatches, initial products of DNA deamination by AID. These results suggest that MutSalpha interacts with the S regions in switching B cells to promote DNA synapsis and recombination.


Assuntos
Linfócitos B/metabolismo , Pareamento Cromossômico/fisiologia , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina/fisiologia , Região de Troca de Imunoglobulinas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linfócitos B/ultraestrutura , Pareamento Incorreto de Bases , Cromatina/metabolismo , Citosina Desaminase/metabolismo , Primers do DNA , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/fisiologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Camundongos , Microscopia Eletrônica , Proteína 2 Homóloga a MutS , Oligonucleotídeos , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Proto-Oncogênicas/fisiologia
11.
J Leukoc Biol ; 104(1): 205-214, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29733456

RESUMO

The asthmatic airways are highly susceptible to inflammatory injury by air pollutants such as ozone (O3 ), characterized by enhanced activation of eosinophilic granulocytes and a failure of immune protective mechanisms. Eosinophil activation during asthma exacerbation contributes to the proinflammatory oxidative stress by high levels of nitric oxide (NO) production and extracellular DNA release. Surfactant protein-D (SP-D), an epithelial cell product of the airways, is a critical immune regulatory molecule with a multimeric structure susceptible to oxidative modifications. Using recombinant proteins and confocal imaging, we demonstrate here that SP-D directly bound to the membrane and inhibited extracellular DNA trap formation by human and murine eosinophils in a concentration and carbohydrate-dependent manner. Combined allergic airway sensitization and O3 exposure heightened eosinophilia and nos2 mRNA (iNOS) activation in the lung tissue and S-nitrosylation related de-oligomerisation of SP-D in the airways. In vitro reproduction of the iNOS action led to similar effects on SP-D. Importantly, S-nitrosylation abolished the ability of SP-D to block extracellular DNA trap formation. Thus, the homeostatic negative regulatory feedback between SP-D and eosinophils is destroyed by the NO-rich oxidative lung tissue environment in asthma exacerbations.


Assuntos
Asma/imunologia , Eosinófilos/imunologia , Armadilhas Extracelulares/imunologia , Estresse Oxidativo/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Asma/metabolismo , Células Cultivadas , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Camundongos , Oxidantes Fotoquímicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ozônio/toxicidade
12.
Nucleic Acids Res ; 30(3): E14, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11809902

RESUMO

The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G.T mismatch was achieved by placing a nick 10-40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo do DNA/genética , DNA Circular/genética , DNA Circular/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Pareamento de Bases , Sequência de Bases , Sistema Livre de Células , Dano ao DNA/genética , DNA Ligases/metabolismo , Replicação do DNA , DNA Circular/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Células HeLa , Humanos , Proteína 2 Homóloga a MutS , Ácidos Nucleicos Heteroduplexes/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Moldes Genéticos , Células Tumorais Cultivadas
13.
DNA Repair (Amst) ; 2(11): 1199-210, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14599742

RESUMO

Genomic DNA and its precursors are susceptible to oxidation during aerobic cellular metabolism, and at least five distinct repair activities target a single common lesion, 7,8-dihydro-8-oxoguanine (8-oxoG). The human mismatch repair (MMR) pathway, which has been implicated in an apoptotic response to covalent DNA damage, is likely to encounter 8-oxoG in both the parental and daughter strand during replication. Here, we show that lesions containing 8-oxoG paired with adenine or cytosine, which are most likely to arise during replication, are not efficiently processed by the mismatch repair system. Lesions containing 8-oxoG paired with thymine or guanine, which are unlikely to arise, are excised in an MSH2/MSH6-dependent manner as effectively as the corresponding mismatches when placed in a context that reflects the daughter strand during replication. Using a newly developed assay based on methylation sensitivity, we characterized strand-excision events opposite 8-oxoG situated to reflect placement in the parental strand. Lesions that efficiently trigger strand excision and resynthesis (8-oxoG paired with thymine or guanine) result in adenine or cytosine insertion opposite 8-oxoG. These latter pairings are poor substrates for further action by mismatch repair, but precursors for alternative pathways with non-mutagenic outcomes. We suggest that the lesions most likely to be encountered by the human mismatch repair pathway during replication, 8-oxoG.A or 8-oxoG.C, are likely to escape processing in either strand by this system. Taken together, these data suggest that the human mismatch repair pathway is not a major contributor to removal of misincorporated 8-oxoG, nor is it likely to trigger repeated attempts at lesion processing.


Assuntos
Adenina/metabolismo , Pareamento Incorreto de Bases , Citosina/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Guanina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Dano ao DNA , Células HeLa , Humanos , Modelos Genéticos
14.
Front Genet ; 6: 177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029241

RESUMO

The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination.

15.
Genetics ; 198(3): 895-904, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146971

RESUMO

Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination.


Assuntos
DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Recombinação Homóloga/genética , Neurospora crassa/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cruzamentos Genéticos , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Homozigoto , Humanos , Meiose , Mutagênese Insercional , Neurospora crassa/citologia , Neurospora crassa/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Esporos Fúngicos/crescimento & desenvolvimento , Supressão Genética
16.
Mob Genet Elements ; 2(4): 184-192, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23087843

RESUMO

MicroRNAs coordinate networks of mRNAs, but predicting specific sites of interactions is complicated by the very few bases of complementarity needed for regulation. Although efforts to characterize the specific requirements for microRNA (miR) regulation have made some advances, no general model of target recognition has been widely accepted. In this work, we describe an entirely novel approach to miR target identification. The genomic events responsible for the creation of individual miR loci have now been described with many miRs now known to have been initially formed from transposable element (TE) sequences. In light of this, we propose that limiting miR target searches to transcripts containing a miR's progenitor TE can facilitate accurate target identification. In this report we outline the methodology behind OrbId (Origin-based identification of microRNA targets). In stark contrast to the principal miR target algorithms (which rely heavily on target site conservation across species and are therefore most effective at predicting targets for older miRs), we find OrbId is particularly efficacious at predicting the mRNA targets of miRs formed more recently in evolutionary time. After defining the TE origins of > 200 human miRs, OrbId successfully generated likely target sets for 191 predominately primate-specific human miR loci. While only a handful of the loci examined were well enough conserved to have been previously evaluated by existing algorithms, we find ~80% of the targets for the oldest miR (miR-28) in our analysis contained within the principal Diana and TargetScan prediction sets. More importantly, four of the 15 OrbId miR-28 putative targets have been previously verified experimentally. In light of OrbId proving best-suited for predicting targets for more recently formed miRs, we suggest OrbId makes a logical complement to existing, conservation based, miR target algorithms.

17.
Mob Genet Elements ; 1(1): 8-17, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-22016841

RESUMO

MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3'UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify. Of note, the most enlightening aspect of miR function-the mRNAs they target-continues to be elusive. Descriptions of the molecular origins of independent miR molecules currently support the hypothesis that miR hairpin generation is based on the adjacent insertion of two related transposable elements (TEs) at one genomic locus. Thus transcription across such TE interfaces establishes many, if not the majority of functional miRs. The implications of these findings are substantial for understanding how TEs confer increased genomic fitness, describing miR transcriptional regulations and making accurate miR target predictions. In this work, we have performed a comprehensive analysis of the genomic events responsible for the formation of all currently annotated miR loci. We find that the connection between miRs and transposable elements is more significant than previously appreciated, and more broadly, supports an important role for repetitive elements in miR origin, expression and regulatory network formation. Further, we demonstrate the utility of these findings in miR target prediction. Our results greatly expand the existing repertoire of defined miR origins, detailing the formation of 2,392 of 15,176 currently recognized miR genomic loci and supporting a mobile genetic element model for the genomic establishment of functional miRs.

18.
PLoS One ; 5(7): e11641, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20661291

RESUMO

BACKGROUND: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt's B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed V(H) and Sgamma3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci. CONCLUSIONS/SIGNIFICANCE: Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.


Assuntos
Citidina Desaminase/metabolismo , Histonas/metabolismo , Ubiquitinação/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
19.
Mol Cell ; 20(3): 367-75, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16285919

RESUMO

MRE11/RAD50/NBS1 (MRN) is a ubiquitous complex that participates in the response to DNA damage and in immunoglobulin (Ig) gene diversification. Ig gene diversification is initiated by deamination of cytosine to uracil, followed by removal of uracil to create an abasic (AP) site. We find that MRE11 associates specifically with rearranged Ig genes in hypermutating B cells, whereas APE1, the major AP-endonuclease in faithful base excision repair, does not. We show that purified, recombinant MRE11/RAD50 can cleave DNA at AP sites and that this AP-lyase activity is conserved from humans to Archaea. MRE11/RAD50 cleaves at AP sites within single-stranded regions of DNA, suggesting that at transcribed Ig genes, cleavage may be coordinated with deamination by AID and deglycosylation by UNG2 to produce single-strand breaks (SSBs) that undergo subsequent mutagenic repair and recombination. These results identify MRN with DNA cleavage in the AID-initiated pathway of Ig gene diversification.


Assuntos
Linfócitos B/metabolismo , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipermutação Somática de Imunoglobulina/fisiologia , Hidrolases Anidrido Ácido , Células Cultivadas , DNA Glicosilases/genética , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/genética , DNA de Cadeia Simples/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Proteína Homóloga a MRE11
20.
Genome Biol ; 5(3): 211, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15003109

RESUMO

Activation-induced deaminase (AID) initiates switch recombination and somatic hypermutation of immunoglobulin genes in activated B cells. Compelling evidence now shows that AID travels with RNA polymerase II to deaminate actively transcribed DNA.


Assuntos
Citidina Desaminase/genética , Mutagênese/genética , Transcrição Gênica/genética , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa