Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Med ; 29(7): 1728-1737, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268724

RESUMO

Brain metastases (BMs) are an emerging challenge in oncology due to increasing incidence and limited treatments. Here, we present results of a single-arm, open-label, phase 2 trial evaluating intracranial efficacy of pembrolizumab, a programmed cell death protein 1 inhibitor, in 9 patients with untreated BMs (cohort A) and 48 patients with recurrent and progressive BMs (cohort B) across different histologies. The primary endpoint was the proportion of patients achieving intracranial benefit, defined by complete response, partial response or stable disease. The primary endpoint was met with an intracranial benefit rate of 42.1% (90% confidence interval (CI): 31-54%). The median overall survival, a secondary endpoint, was 8.0 months (90% CI: 5.5-8.7 months) across both cohorts, 6.5 months (90% CI: 4.5-18.7 months) for cohort A and 8.1 months (90% CI: 5.3-9.6 months) for cohort B. Seven patients (12.3%), encompassing breast, melanoma and sarcoma histologies, had overall survival greater than 2 years. Thirty patients (52%; 90% CI: 41-64%) had one or more grade-3 or higher adverse events that were at least possibly treatment related. Two patients had grade-4 adverse events (cerebral edema) that were deemed at least possibly treatment related. These results suggest that programmed cell death protein 1 blockade may benefit a select group of patients with BMs, and support further studies to identify biomarkers and mechanisms of resistance. ClinicalTrials.gov identifier: NCT02886585.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Melanoma/patologia
2.
Nat Commun ; 13(1): 1325, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35289329

RESUMO

High-grade meningiomas are associated with neuro-cognitive morbidity and have limited treatments. High-grade meningiomas harbor an immunosuppressive tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression may contribute to their aggressive phenotype. Here, we present the results of a single-arm, open-label phase 2 trial (NCT03279692) evaluating the efficacy of pembrolizumab, a PD-1 inhibitor, in a cohort of 25 evaluable patients with recurrent and progressive grade 2 and 3 meningiomas. The primary endpoint is the proportion of patients alive and progression-free at 6 months (PFS-6). Secondary endpoints include progression-free and overall survival, best intracranial response, and toxicity. Our study has met its primary endpoint and achieved a PFS-6 rate of 0.48 (90% exact CI: 0.31-0.66) and a median PFS of 7.6 months (90% CI: 3.4-12.9 months). Twenty percent of patients have experienced one (or more) grade-3 or higher treatment-related adverse events. These results suggest that pembrolizumab exerts promising efficacy on a subset of these tumors. Further studies are needed to identify the biological facets within the meningioma TME that may drive response to immune-based therapies.


Assuntos
Neoplasias Meníngeas , Meningioma , Anticorpos Monoclonais Humanizados/efeitos adversos , Progressão da Doença , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Microambiente Tumoral
3.
Cancer Immunol Res ; 10(8): 996-1012, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35706413

RESUMO

Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa