Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genesis ; 62(1): e23539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37501352

RESUMO

Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal Col4a1 codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in Col4a1-P2A-eGFP mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.


Assuntos
Colágeno Tipo IV , Células Endoteliais , Humanos , Feminino , Gravidez , Células Endoteliais/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Proteínas de Fluorescência Verde , Desenvolvimento Embrionário , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37259315

RESUMO

Ephrin receptors constitute a large family of receptor tyrosine kinases in mammals that through interaction with cell surface-anchored ephrin ligands regulate multiple different cellular responses in numerous cell types and tissues. In the cardiovascular system, studies performed in vitro and in vivo have pointed to a critical role for Ephrin receptor B4 (EPHB4) as a regulator of blood and lymphatic vascular development and function. However, in this role, EPHB4 appears to act not as a classical growth factor receptor but instead functions to dampen the activation of the Ras-mitogen activated protein signaling (MAPK) pathway induced by other growth factor receptors in endothelial cells (EC). To inhibit the Ras-MAPK pathway, EPHB4 interacts functionally with Ras p21 protein activator 1 (RASA1) also known as p120 Ras GTPase-activating protein. Here, we review the evidence for an inhibitory role for an EPHB4-RASA1 interface in EC. We further discuss the mechanisms by which loss of EPHB4-RASA1 signaling in EC leads to blood and lymphatic vascular abnormalities in mice and the implications of these findings for an understanding of the pathogenesis of vascular anomalies in humans caused by mutations in EPHB4 and RASA1 genes. Last, we provide insights into possible means of drug therapy for EPHB4- and RASA1-related vascular anomalies.

3.
Biomedicines ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35625756

RESUMO

Sepsis is a systemic infection that can lead to multi-organ failure. It is characterised by an uncontrolled immune response with massive neutrophil influx into peripheral organs. Neutrophil extravasation into tissues depends on actin remodeling and actin-binding proteins such as cortactin, which is expressed ubiquitously, except for neutrophils. Endothelial cortactin is necessary for proper regulation of neutrophil transendothelial migration and recruitment to sites of infection. We therefore hypothesised that cortactin plays a crucial role in sepsis development by regulating neutrophil trafficking. Using a murine model of sepsis induced by cecal ligation and puncture (CLP), we showed that cortactin-deficient (KO) mice survive better due to reduced lung injury. Histopathological analysis of lungs from septic KO mice revealed absence of oedema, reduced vascular congestion and mucus deposition, and better-preserved alveoli compared to septic wild-type (WT) mice. Additionally, sepsis-induced cytokine storm, excessive neutrophil infiltration into the lung and oxidative stress were significantly reduced in KO mice. Neutrophil depletion 12 h after sepsis improved survival in WT mice by averting lung injury, similar to both neutrophil-depleted and non-depleted KO mice. Our findings highlight a critical role of cortactin for lung neutrophil infiltration and sepsis severity.

4.
Immunol Lett ; 248: 99-108, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841974

RESUMO

Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Anti-Inflamatórios/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos
5.
Eur J Cell Biol ; 101(2): 151214, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35286924

RESUMO

Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.


Assuntos
Neutrófilos , Sepse , Animais , Modelos Animais de Doenças , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo
6.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34826347

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Metaloproteinases da Matriz , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa