Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 40(3): 820-833, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32474950

RESUMO

Perfluoro alkyl acids (PFAAs) are known to bioconcentrate in plants grown in contaminated soils; the potential risk from consuming these plants is currently less understood. We determined that the current daily reference doses (RfDs) of the US Environmental Protection Agency (USEPA) could be met by consuming a single radish grown in soils with a perfluorooctanoic acid (PFOA) concentration of 9.7 ng/g or a perfluorooctane sulfonate (PFOS) concentration of 90.5 ng/g. Using a combination of our own research and literature data on plant uptake of PFAAs from soil, we developed equations for predicting PFAA bioconcentration factors (BCFs) for plant shoot and root tissues grown in soils with a known percentage of organic carbon. This calculated BCF was then applied to 6 scenarios with measured soil PFAA concentrations to estimate PFAA concentrations in plants and potential exposure to humans and animals consuming harvested vegetation. Five of the 6 scenarios showed potential for surpassing USEPA PFAA RfDs at soil concentrations as low as 24 ng/g PFOA and 28 ng/g PFOS. Environ Toxicol Chem 2021;40:832-845. © 2020 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes do Solo , Animais , Caprilatos , Carbono , Fluorocarbonos/análise , Humanos , Brotos de Planta/química , Plantas , Solo , Poluentes do Solo/análise
2.
Environ Toxicol Chem ; 40(3): 727-734, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187702

RESUMO

In an effort to determine contaminant presence, concentrations, and movement from a low-level radioactive waste (LLRW) burial disposal site to ecosystems in the surrounding area, a study was developed to assess concentrations of per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and tritium. To complete this assessment small mammals, vegetation, soil, and insect samples were collected from areas within and adjacent to the Beatty, Nevada, LLRW site and from a reference area located approximately 3 km south of the LLRW site. Samples underwent analysis via liquid chromatography tandem mass spectrometry, gas chromatography mass spectrometry, or scintillation spectroscopy depending on the analyte of interest. Small mammal tissues showed maximum concentrations of over 1700 ng/g for PFAS, 1600 ng/g for PCBs, and 10 000 Bq/kg for tritium. The primary contaminants found in soil samples were PCBs, with maximum concentrations exceeding 25 ng/g. Trace amounts of PFAS were also detected in soils and insects. Only qualitative data were obtained from vegetation samples because of the complex matrix of the dominant plant species (creosote bush; Larrea tridentata [Sessé & Moc. ex DC.] Coville). Overall, these data indicate the presence of various anthropogenic contaminants in the ecosystem surrounding the LLRW area, but additional analyses are necessary to confirm the sources and migration pathways of PFAS and PCBs in this hyperarid environment. Environ Toxicol Chem 2021;40:727-734. © 2020 SETAC.


Assuntos
Bifenilos Policlorados , Resíduos Radioativos , Animais , Ecossistema , Monitoramento Ambiental , Bifenilos Policlorados/análise , Roedores
3.
One Health ; 10: 100161, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33117875

RESUMO

More than 75% of emerging infectious diseases and 60% of known human infectious diseases are transmitted from animals. Among these zoonoses, rabies is of utmost public health significance due to its lethality. The multi-faceted nature of zoonotic disease complicates control and prevention and thus, a multi-sectoral One Health Approach could be a better strategy to cope with rabies. Up until now, rabies prevention and control programs are conducted utilizing mass vaccination of domestic and community dogs and cats, and mass awareness programs. However, the burden of rabies has not been reduced as these approaches have failed to include all stakeholders (human, animal, and environmental health sectors) in disease management programs. The aim of this review is to highlight why and how One Health Approach would be the most effective way to control rabies in low- and middle-income countries (LMICs) like Nepal.

4.
Environ Toxicol Chem ; 38(11): 2497-2502, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408228

RESUMO

Although many studies have evaluated the fate of per- and polyfluoroalkyl acids (PFAAs) in aquatic environments, few have observed their fate in terrestrial environments. It has been proposed that ingestion could be a major PFAA exposure route for humans. We determined PFAA uptake in radish, carrot, and alfalfa under a maximum bioavailability scenario. Bioconcentration factors (BCFs) were determined in the edible tissue of radish (perfluorobutanesulfonate [PFBS] = 72; perfluorohexanesulfonate [PFHxS] = 13; perfluoroheptanoate [PFHpA] = 65; perfluorooctanoate [PFOA] = 18; perfluorooctanesulfonate [PFOS] = 2.9; and perfluorononanoate [PFNA] = 9.6), carrot (PFBS = 5.9; PFHxS = 1.1; PFHpA = 29; PFOA = 3.1; PFOS = 1; and PFNA = 1.4), and alfalfa (PFBS = 107; PFHxS = 12; PFHpA = 91; PFOA = 10; PFOS = 1.4; and PFNA = 1.7). Some of these PFAA BCFs are as much as 2 orders of magnitude higher than those measured previously in plants grown in biosolid-amended soils. Environ Toxicol Chem 2019;38:2497-2502. © 2019 SETAC.


Assuntos
Fluorocarbonos/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Humanos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solo
5.
Integr Environ Assess Manag ; 13(3): 528-532, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28440932

RESUMO

Small plastic fragments (microplastics or solid particles <5 mm in size or "microbeads" used in personal care products and cosmetics) may ultimately find their way into aquatic environments. We studied the presence of microplastics (particle sizes 53-105 µm and 106-179 µm) spatially and temporally in 3 connected urban lakes being fed by treated wastewater effluent in Lubbock, Texas. These lakes also serve as drainage during storm events. Water samples from drainage playa wetlands within the city were also collected. Our interest was in determining the presence or absence of microplastics in a freshwater environment as well as the source apportionment between personal care products (via wastewater) and discarded plastics (via runoff). Results showed that average concentrations of microplastics in samples collected from lakes ranged from 0.79 ± 0.88 mg/L to 1.56 ± 1.64 mg/L for the 53-105 µm size fraction and from 0.31 ± 0.72 mg/L to 1.25 ± 1.98 mg/L for the 106-179 µm size fraction. For samples collected from playa wetlands, average microplastic concentrations ranged from 0.64 ± 0.92 mg/L to 5.51 ± 9.09 mg/L for the 53-105 µm size fraction and from nondetectable (ND) to 1.79 ± 3.04 mg/L for the 106-179 µm size fraction. Our results (based on comparison of microplastic masses) suggest that urban runoff also contributes microplastics to surface water in addition to the treated wastewater effluent (in this particular case). The present findings may assist in adopting additional monitoring efforts and provide information on the potential contribution of secondary microplastic input into aquatic environments. Integr Environ Assess Manag 2017;13:528-532. © 2017 SETAC.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Lagos , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Águas Residuárias/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa