Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
For Policy Econ ; 147: 1-17, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36923688

RESUMO

The impact of climate change on forest ecosystems remains uncertain, with wide variation in potential climate impacts across different radiative forcing scenarios and global circulation models, as well as potential variation in forest productivity impacts across species and regions. This study uses an empirical forest composition model to estimate the impact of climate factors (temperature and precipitation) and other environmental parameters on forest productivity for 94 forest species across the conterminous United States. The composition model is linked to a dynamic optimization model of the U.S. forestry sector to quantify economic impacts of a high warming scenario (Representative Concentration Pathway 8.5) under six alternative climate projections and two socioeconomic scenarios. Results suggest that forest market impacts and consumer impacts could range from relatively large losses (-$2.6 billion) to moderate gain ($0.2 billion) per year across climate scenarios. Temperature-induced higher mortality and lower productivity for some forest types and scenarios, coupled with increasing economic demands for forest products, result in forest inventory losses by end of century relative to the current climate baseline (3%-23%). Lower inventories and reduced carbon sequestration capacity result in additional economic losses of up to approximately $4.1 billion per year. However, our results also highlight important adaptation mechanisms, such forest type changes and shifts in regional mill capacity that could reduce the impact of high impact climate scenarios.

2.
J For Econ ; 37(1): 127-161, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942211

RESUMO

Understanding greenhouse gas mitigation potential of the U.S. agriculture and forest sectors is critical for evaluating potential pathways to limit global average temperatures from rising more than 2° C. Using the FASOMGHG model, parameterized to reflect varying conditions across shared socioeconomic pathways, we project the greenhouse gas mitigation potential from U.S. agriculture and forestry across a range of carbon price scenarios. Under a moderate price scenario ($20 per ton CO2 with a 3% annual growth rate), cumulative mitigation potential over 2015-2055 varies substantially across SSPs, from 8.3 to 17.7 GtCO2e. Carbon sequestration in forests contributes the majority, 64-71%, of total mitigation across both sectors. We show that under a high income and population growth scenario over 60% of the total projected increase in forest carbon is driven by growth in demand for forest products, while mitigation incentives result in the remainder. This research sheds light on the interactions between alternative socioeconomic narratives and mitigation policy incentives which can help prioritize outreach, investment, and targeted policies for reducing emissions from and storing more carbon in these land use systems.

3.
Environ Sci Technol ; 55(21): 14806-14816, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652143

RESUMO

This study presents a cradle-to-grave life cycle analysis (LCA) of the greenhouse gas (GHG) emissions of the electricity generated from forest biomass in different regions of the United States (U.S.), taking into consideration regional variations in biomass availabilities and logistics. The regional biomass supply for a 20 MW bioelectricity facility is estimated using the Land Use and Resource Allocation (LURA) model. Results from LURA and data on regional forest management, harvesting, and processing are incorporated into the GHGs, Regulated Emissions, and Energy Use in Technologies (GREET) model for LCA. The results suggest that GHG emissions of mill residues-based pathways can be 15-52% lower than those of pulpwood-based pathways, with logging residues falling in between. Nonetheless, our analysis suggests that screening bioenergy projects on specific feedstock types alone is not sufficient because GHG emissions of a pulpwood-based pathway in one state can be lower than those of a mill residue-based pathway in another state. Furthermore, the available biomass supply often consists of several woody feedstocks, and its composition is region-dependent. Forest biomass-derived electricity is associated with 86-93% lower life-cycle GHG emissions than the emissions of the average grid electricity in the U.S. Key factors driving bioelectricity GHG emissions include electricity generation efficiency, transportation distance, and energy use for biomass harvesting and processing.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Animais , Biomassa , Eletricidade , Florestas , Efeito Estufa , Estágios do Ciclo de Vida , Estados Unidos
4.
For Policy Econ ; 87: 35-48, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32280299

RESUMO

The United States has recently set ambitious national goals for greenhouse gas (GHG) reductions over the coming decades. A portion of these reductions are based on expected sequestration and storage contributions from land use, land use change, and forestry (LULUCF). Significant uncertainty exists in future forest markets and thus the potential LULUCF contribution to US GHG reduction goals. This study seeks to inform the discussion by modeling US forest GHG accounts per different simulated demand scenarios across a grid of over 130,000 USDA Forest Service Forest Inventory and Analysis (FIA) forestland plots over the conterminous United States. This spatially disaggregated future supply is based on empirical yield functions for log volume, biomass and carbon. Demand data is based on a spatial database of over 2300 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Transportation costs are derived from fuel prices and the locations of FIA plot from which a log is harvested and mill or port destination. Trade between mills in intermediate products such as sawmill residues or planer shavings is also captured within the model formulation. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2015-2035 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a Reference, Low Economic Growth, and High Economic Growth case. For each macroeconomic scenario simulated, figures showing historic and scenario-specific live tree carnon emissions and sequestration are generated. Maps of the spatial allocation of both forest harvesting and related carbon fluxes are presented at the National level and detail is given for both regions and ownerships.

5.
J For ; 117(6): 560-578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32153304

RESUMO

As the demand for forest products and carbon storage in standing timbers increases, intensive planting of forest resources is expected to increase. With the increased use of plantation practices, it is important to understand the influence that forest plot characteristics have on the likelihood of where these practices are occurring. Depending on the goals of a policy or program, increasing forest planting could be a desirable outcome or something to avoid. This study estimates a spatially explicit logistical regression function to assess the likelihood that forest plots will be planted based on physical, climate, and economic factors. The empirical results are used to project the potential spatial distribution of forest planting, at the intensive and extensive land-use margins, across illustrative future scenarios. Results from this analysis offer insight into the factors that have driven forest planting in the United States historically and the potential distribution of new forest planting in the coming decades under policy or market scenarios that incentivize improved forest productivity or certain ecosystem services provided by intensively managed systems (e.g., carbon sequestration).

6.
For Prod J ; 68(3): 303-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32280136

RESUMO

To model international trade of forest products we use a gravity model of trade. In modeling trade, we estimate the impact of importer gross domestic product (GDP), exporter GDP, and distance between trading partners using Poisson pseudo-maximum likelihood (PPML). When estimating the log-linearized gravity model (ordinary least squares [OLS]), two issues arise. First, potential bias associated with truncation of all zero-trade observations due to the nonexistence of the natural log of zero. Second, heteroscedasticity can bias results from the log-linearized gravity model because of the multiplicative error term of the stochastic gravity model. To address these two issues, we propose avoiding the log-linearized gravity model and instead estimate the nonlinear gravity model via PPML. To estimate the model, trade data are compiled from the Food and Agriculture Organization of the United Nations. The observation window is from 1997 to 2014 and covers 13 product categories at a country-pair level. In our estimation, we find systematic differences in estimates from OLS in comparison with estimates from PPML. Using the estimated elasticities, in combination with estimates of future GDP from shared socioeconomic pathways, we project future US exports to the year 2030 for each item category in addition to total exports for Brazilian wood pulp, New Zealand industrial roundwood, and Canadian coniferous sawnwood. Using our approach, we provide a tool for policy makers and industry leaders alike to make informed decisions over prior estimates of forest product trade.

7.
Methods Rep RTI Press ; 20182018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32211618

RESUMO

The Forestry and Agriculture Sector Optimization Model with Greenhouse Gases (FASOMGHG) has historically relied on regional average costs of land conversion to simulate land use change across cropland, pasture, rangeland, and forestry. This assumption limits the accuracy of the land conversion estimates by not recognizing spatial heterogeneity in land quality and conversion costs. Using data from Nielsen et al. (2014), we obtained the afforestation cost per county, then estimated nonparametric regional marginal cost functions for land converting to forestry. These afforestation costs were then incorporated into FASOMGHG. Three different assumptions for land moving into the forest sector (constant average conversion cost, static rising marginal costs, and dynamic rising marginal cost) were run in order to assess the implications of alternative land conversion cost assumptions on key outcomes, such as projected forest area and cropland use, carbon sequestration, and forest product output.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa