Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 7(11): e1002356, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072985

RESUMO

Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors.


Assuntos
Desenvolvimento Ósseo/genética , Cartilagem/crescimento & desenvolvimento , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Lâmina de Crescimento/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOX9/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Condrócitos/citologia , Condrócitos/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional , Proteína GLI1 em Dedos de Zinco
2.
J Immunol Methods ; 277(1-2): 171-83, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12799049

RESUMO

A major challenge in the field of transplantation is to prevent graft rejection and prolong graft survival. Tolerance induction is a promising way to achieve long-term graft survival without the need for potent immunosuppression and its associated side effects. The recent success of co-stimulatory blockade by the chimeric protein CTLA4Ig in the modulation of the recipient's immune system and the prolongation of graft survival in animal models suggests a possible application of CTLA4Ig in clinical transplantation. To produce sufficient amounts of CTLA4Ig for future clinical application, we sought to use the mammary gland as a bioreactor and produce CTLA4Ig in the milk of transgenic farm animals. Prior to the generation of transgenic farm animals, we tested our strategy in mice. Using the promoter of the sheep beta-lactoglobulin gene, we expressed our CTLA4Ig chimeric gene in the mammary gland of transgenic mice. The yield of CTLA4Ig was fivefold higher in transgenic milk than that from transfected cells. Purified milk-derived CTLA4Ig is biologically active and suppresses T cell activation. We showed that the production of CTLA4Ig in the milk has no adverse immunosuppression effect on the transgenic animals and the offsprings that were fed with the transgenic milk. The findings suggest that the approach to produce CTLA4Ig in milk by transgenesis is feasible; further studies involving farm animals are warranted.


Assuntos
Imunoconjugados/metabolismo , Imunossupressores/metabolismo , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Abatacepte , Animais , Antígeno B7-1/imunologia , Células CHO , Cromatografia de Afinidade , Cricetinae , Feminino , Citometria de Fluxo , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunossupressores/imunologia , Imunossupressores/isolamento & purificação , Lactação , Teste de Cultura Mista de Linfócitos , Glândulas Mamárias Animais/imunologia , Camundongos , Camundongos Transgênicos , Leite/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Suínos , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa