Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555176

RESUMO

Administration of systemic retinoids such as acitretin has not been approved yet for pediatric patients. An adverse event of retinoid-therapy that occurs with lower prevalence in children than in adults is hyperlipidemia. This might be based on the lack of comorbidities in young patients, but must not be neglected. Especially for the development of the human brain up to young adulthood, dysbalance of lipids might be deleterious. Here, we provide for the first time an in-depth analysis of the influence of subchronic acitretin-administration on lipid composition of brain parenchyma of young wild type mice. For comparison and to evaluate the systemic effect of the treatment, liver lipids were analogously investigated. As expected, triglycerides increased in liver as well as in brain and a non-significant increase in cholesterol was observed. However, specifically brain showed an increase in lyso-phosphatidylcholine and carnitine as well as in sphingomyelin. Group analysis of lipid classes revealed no statistical effects, while single species were tissue-dependently changed: effects in brain were in general more subtly as compared to those in liver regarding the mere number of changed lipid species. Thus, while the overall impact of acitretin seems comparably small regarding brain, the change in individual species and their role in brain development and maturation has to be considered.


Assuntos
Acitretina , Hiperlipidemias , Adulto , Humanos , Criança , Adolescente , Animais , Camundongos , Adulto Jovem , Acitretina/farmacologia , Acitretina/uso terapêutico , Lipidômica , Hiperlipidemias/induzido quimicamente , Colesterol , Encéfalo
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260941

RESUMO

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer's disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines-caffeine, theophylline and theobromine-and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.


Assuntos
Doença de Alzheimer/genética , Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Xantinas/farmacologia , Linhagem Celular Tumoral , Genes Essenciais , Humanos , Pentoxifilina/farmacologia , Análise de Componente Principal , Teobromina/farmacologia , Teofilina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Xantinas/química
3.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257109

RESUMO

Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-ß (Aß), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aß-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D2 and D3 analogues decreased Aß-production and increased Aß-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aß-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased ß-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/tratamento farmacológico , Proteólise , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologia
4.
Front Cell Dev Biol ; 10: 859052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557938

RESUMO

Cellular lipid metabolism is tightly regulated and requires a sophisticated interplay of multiple subcellular organelles to adapt to changing nutrient supply. PEX19 was originally described as an essential peroxisome biogenesis factor that selectively targets membrane proteins to peroxisomes. Metabolic aberrations that were associated with compromised PEX19 functions, were solely attributed to the absence of peroxisomes, which is also considered the underlying cause for Zellweger Spectrum Disorders. More recently, however, it was shown that PEX19 also mediates the targeting of the VCP/P97-recuitment factor UBXD8 to the ER from where it partitions to lipid droplets (LDs) but the physiological consequences remained elusive. Here, we addressed the intriguing possibility that PEX19 coordinates the functions of the major cellular sites of lipid metabolism. We exploited the farnesylation of PEX19 and deciphered the organelle-specific functions of PEX19 using systems level approaches. Non-farnesylated PEX19 is sufficient to fully restore the metabolic activity of peroxisomes, while farnesylated PEX19 controls lipid metabolism by a peroxisome-independent mechanism that can be attributed to sorting a specific protein subset to LDs. In the absence of this PEX19-dependent LD proteome, cells accumulate excess triacylglycerols and fail to fully deplete their neutral lipid stores under catabolic conditions, highlighting a hitherto unrecognized function of PEX19 in controlling neutral lipid storage and LD dynamics.

5.
Nutrients ; 13(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671099

RESUMO

Methylxanthines (MTX) are purine derived xanthine derivatives. Whereas naturally occurring methylxanthines like caffeine, theophylline or theobromine are widely consumed in food, several synthetic but also non-synthetic methylxanthines are used as pharmaceuticals, in particular in treating airway constrictions. Besides the well-established bronchoprotective effects, methylxanthines are also known to have anti-inflammatory and anti-oxidative properties, mediate changes in lipid homeostasis and have neuroprotective effects. Known molecular mechanisms include adenosine receptor antagonism, phosphodiesterase inhibition, effects on the cholinergic system, wnt signaling, histone deacetylase activation and gene regulation. By affecting several pathways associated with neurodegenerative diseases via different pleiotropic mechanisms and due to its moderate side effects, intake of methylxanthines have been suggested to be an interesting approach in dealing with neurodegeneration. Especially in the past years, the impact of methylxanthines in neurodegenerative diseases has been extensively studied and several new aspects have been elucidated. In this review we summarize the findings of methylxanthines linked to Alzheimer´s disease, Parkinson's disease and Multiple Sclerosis since 2017, focusing on epidemiological and clinical studies and addressing the underlying molecular mechanisms in cell culture experiments and animal studies in order to assess the neuroprotective potential of methylxanthines in these diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Xantinas/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/epidemiologia , Animais , Cafeína/administração & dosagem , Café/química , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/epidemiologia , Teobromina/administração & dosagem , Teofilina/administração & dosagem
6.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831163

RESUMO

The accumulation of amyloid ß-protein (Aß) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aß degradation, which, in addition to Aß production, is critical for Aß homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aß degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos/metabolismo , Insulisina/metabolismo , Proteólise , Animais , Biocatálise , Linhagem Celular , Camundongos Endogâmicos C57BL , Modelos Biológicos
7.
Sci Rep ; 11(1): 15301, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315969

RESUMO

Alzheimer's disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-ß (Aß). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aß-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.


Assuntos
Acitretina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Modelos Animais de Doenças , Lipidômica , Fígado/metabolismo , Modelos Biológicos , Doença de Alzheimer/metabolismo , Animais , Camundongos
8.
Cell Rep ; 34(11): 108844, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730587

RESUMO

Store-operated Ca2+-entry (SOCE) regulates basal and receptor-triggered Ca2+ signaling with STIM proteins sensing the endoplasmic reticulum (ER) Ca2+ content and triggering Ca2+ entry by gating Orai channels. Although crucial for immune cells, STIM1's role in neuronal Ca2+ homeostasis is controversial. Here, we characterize a splice variant, STIM1B, which shows exclusive neuronal expression and protein content surpassing conventional STIM1 in cerebellum and of significant abundance in other brain regions. STIM1B expression results in a truncated protein with slower kinetics of ER-plasma membrane (PM) cluster formation and ICRAC, as well as reduced inactivation. In primary wild-type neurons, STIM1B is targeted by its spliced-in domain B to presynaptic sites where it converts classic synaptic depression into Ca2+- and Orai-dependent short-term synaptic enhancement (STE) at high-frequency stimulation (HFS). In conjunction with altered STIM1 splicing in human Alzheimer disease, our findings highlight STIM1 splicing as an important regulator of neuronal calcium homeostasis and of synaptic plasticity.


Assuntos
Molécula 1 de Interação Estromal/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Éxons/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína ORAI1/metabolismo , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
9.
Sci Rep ; 10(1): 9164, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514053

RESUMO

The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-ß (Aß), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aß-production and reduced Aß-degradation, leading to increased Aß-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased ß-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aß-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aß-degrading-enzymes. Regarding Aß-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aß-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Capsaicina/efeitos adversos , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Contraindicações de Medicamentos , Expressão Gênica , Humanos , Neuroblastoma
10.
Aging Cell ; 19(11): e13264, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128835

RESUMO

One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-ß (Aß) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aß-production and -degradation is necessary to prevent pathological Aß-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aß-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aß-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aß-production caused by APP or Presenilin deficiency, IDE-mediated Aß-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aß-production and Aß-degradation forming a regulatory cycle in which AICD promotes Aß-degradation via IDE and IDE itself limits its own production by degrading AICD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Insulisina/metabolismo , Doença de Alzheimer/patologia , Humanos , Transdução de Sinais
11.
J Nutr Biochem ; 67: 123-137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889441

RESUMO

A vast majority of the elderly population shows a mild to moderate vitamin D deficiency. Besides the well-known function of vitamin D, vitamin D receptor is also expressed in brain and is discussed to regulate several genes. However very little is known whether genes are regulated, associated with Alzheimer's disease (AD). Here we investigate 117 genes, known to be affected in AD, in mouse brain samples with a mild vitamin D hypovitaminosis comparable to the vitamin D status of the elderly population (20%-30% deficiency). The 117 genes include two positive controls, Nep and Park7, already known to be affected by both AD and vitamin D hypovitaminosis. The 25 most promising candidates were verified in a second independent mouse cohort, resulting in eleven genes further evaluated against three additional housekeeping genes. Three of the remaining eight significantly altered genes are involved in APP homeostasis (Snca, Nep, Psmb5), and each one gene in oxidative stress (Park7), inflammation (Casp4), lipid metabolism (Abca1), signal transduction (Gnb5) and neurogenesis (Plat). Our results tighten the link of vitamin D and AD and underline that vitamin D influences several genes also in brain, highlighting that a strong link not only to AD but also to other neurodegenerative diseases might exist.


Assuntos
Doença de Alzheimer/genética , Encéfalo/fisiologia , Deficiência de Vitamina D/genética , Animais , Feminino , Perfilação da Expressão Gênica , Inflamação/genética , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Deficiência de Vitamina D/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa