Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 69(22): 5547-5560, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30137564

RESUMO

The PIB ATPase heavy metal ATPase 4 (HMA4) has a central role in the zinc homeostasis network of Arabidopsis thaliana. This membrane protein loads metal from the pericycle cells into the xylem in roots, thereby allowing root to shoot metal translocation. Moreover, HMA4 is key for zinc hyperaccumulation as well as zinc and cadmium hypertolerance in the pseudometallophyte Arabidopsis halleri. The plant-specific cytosolic C-terminal extension of HMA4 is rich in putative metal-binding residues and has substantially diverged between A. thaliana and A. halleri. To clarify the function of the domain in both species, protein variants with truncated C-terminal extension, as well as with mutated di-Cys motifs and/or a His-stretch, were functionally characterized. We show that di-Cys motifs, but not the His-stretch, contribute to high affinity zinc binding and function in planta. We suggest that the HMA4 C-terminal extension is at least partly responsible for protein targeting to the plasma membrane. Finally, we reveal that the C-terminal extensions of both A. thaliana and A. halleri HMA4 proteins share similar function, despite marginally different zinc-binding capacity.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Especificidade da Espécie
2.
Plant Mol Biol ; 90(4-5): 453-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26797794

RESUMO

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Metais/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Cádmio/metabolismo , Membrana Celular , Clonagem Molecular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Transporte Proteico , Zinco/metabolismo
3.
Biochem J ; 450(3): 477-86, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23289540

RESUMO

MßL (metallo-ß-lactamase) enzymes are usually produced by multi-resistant Gram-negative bacterial strains and have spread worldwide. An approach on the basis of phage display was used to select single-domain antibody fragments (VHHs, also called nanobodies) that would inhibit the clinically relevant VIM (Verona integron-encoded MßL)-4 MßL. Out of more than 50 selected nanobodies, only the NbVIM_38 nanobody inhibited VIM-4. The paratope, inhibition mechanism and epitope of the NbVIM_38 nanobody were then characterized. An alanine scan of the NbVIM_38 paratope showed that its binding was driven by hydrophobic amino acids. The inhibitory concentration was in the micromolar range for all ß-lactams tested. In addition, the inhibition was found to follow a mixed hyperbolic profile with a predominantly uncompetitive component. Moreover, substrate inhibition was recorded only after nanobody binding. These kinetic data are indicative of a binding site that is distant from the active site. This finding was confirmed by epitope mapping analysis that was performed using peptides, and which identified two stretches of amino acids in the L6 loop and at the end of the α2 helix. Because this binding site is distant from the active site and alters both the substrate binding and catalytic properties of VIM-4, this nanobody can be considered as an allosteric inhibitor.


Assuntos
Anticorpos de Domínio Único/farmacologia , Inibidores de beta-Lactamases , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Camelídeos Americanos/imunologia , Camelus/imunologia , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Mapeamento de Epitopos , Epitopos/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , beta-Lactamases/química , beta-Lactamases/imunologia
4.
Antimicrob Agents Chemother ; 55(3): 1248-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21149620

RESUMO

The metallo-ß-lactamase VIM-4, mainly found in Pseudomonas aeruginosa or Acinetobacter baumannii, was produced in Escherichia coli and characterized by biochemical and X-ray techniques. A detailed kinetic study performed in the presence of Zn²+ at concentrations ranging from 0.4 to 100 µM showed that VIM-4 exhibits a kinetic profile similar to the profiles of VIM-2 and VIM-1. However, VIM-4 is more active than VIM-1 against benzylpenicillin, cephalothin, nitrocefin, and imipenem and is less active than VIM-2 against ampicillin and meropenem. The crystal structure of the dizinc form of VIM-4 was solved at 1.9 Å. The sole difference between VIM-4 and VIM-1 is found at residue 228, which is Ser in VIM-1 and Arg in VIM-4. This substitution has a major impact on the VIM-4 catalytic efficiency compared to that of VIM-1. In contrast, the differences between VIM-2 and VIM-4 seem to be due to a different position of the flapping loop and two substitutions in loop 2. Study of the thermal stability and the activity of the holo- and apo-VIM-4 enzymes revealed that Zn²+ ions have a pronounced stabilizing effect on the enzyme and are necessary for preserving the structure.


Assuntos
Antibacterianos/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , Ampicilina/metabolismo , Cefalosporinas/metabolismo , Cefalotina/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Imipenem/metabolismo , Espectroscopia de Ressonância Magnética , Meropeném , Penicilina G/metabolismo , Tienamicinas , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa