Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Oecologia ; 204(1): 71-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097779

RESUMO

Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Anfíbios , Anuros/microbiologia , Bufonidae , Micoses/veterinária , Micoses/microbiologia , Tamanho Corporal
2.
Heredity (Edinb) ; 126(4): 656-667, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33564181

RESUMO

Clinal variation is paramount for understanding the factors shaping genetic diversity in space and time. During the last glacial maximum, northern Europe was covered by glacial ice that rendered the region uninhabitable for most taxa. Different evolutionary processes during and after the recolonisation of this area from different glacial refugia have affected the genetic landscape of the present day European flora and fauna. In this study, we focus on the common toad (Bufo bufo) in Sweden and present evidence suggesting that these processes have resulted in two separate lineages of common toad, which colonised Sweden from two directions. Using ddRAD sequencing data for demographic modelling, structure analyses, and analysis of molecular variance (AMOVA), we provide evidence of a contact zone located between Uppland and Västerbotten in central Sweden. Genetic diversity was significantly higher in southern Sweden compared to the north, in accordance with a pattern of decreased genetic diversity with increasing distance from glacial refugia. Candidate genes under putative selection are identified through outlier detection and gene-environment association methods. We provide evidence of divergent selection related to stress response and developmental processes in these candidate genes. The colonisation of Sweden by two separate lineages may have implications for how future conservation efforts should be directed by identifying management units and putative local adaptations.


Assuntos
Bufo bufo , Deriva Genética , Genética Populacional , Seleção Genética , Animais , Evolução Biológica , Bufo bufo/genética , Variação Genética , Filogenia , Refúgio de Vida Selvagem
3.
Heredity (Edinb) ; 126(2): 279-292, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958927

RESUMO

Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene-environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6-8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.


Assuntos
Fluxo Gênico , Ranidae/genética , Seleção Genética , Animais , Meio Ambiente , Deriva Genética , Larva/genética , Polimorfismo de Nucleotídeo Único
4.
Am Nat ; 195(3): E67-E86, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097047

RESUMO

When environmental variation is spatially continuous, dispersing individuals move among nearby sites with similar habitat conditions. But as an environmental gradient becomes steeper, gene flow may connect more divergent habitats, and this is predicted to reduce the slope of the adaptive cline that evolves. We compared quantitative genetic divergence of Rana temporaria frog populations along a 2,000-m elevational gradient in eastern Switzerland (new experimental results) with divergence along a 1,550-km latitudinal gradient in Fennoscandia (previously published results). Both studies found significant countergradient variation in larval development rate (i.e., animals from cold climates developed more rapidly). The cline was weaker with elevation than with latitude. Animals collected on both gradients were genotyped at ∼2,000 single-nucleotide polymorphism markers, revealing that dispersal distance was 30% farther on the latitudinal gradient but 3.9 times greater with respect to environmental conditions on the elevational gradient. A meta-analysis of 19 experimental studies of anuran populations spanning temperature gradients revealed that countergradient variation in larval development, while significant overall, was weaker when measured on steeper gradients. These findings support the prediction that adaptive population divergence is less pronounced, and maladaptation more pervasive, on steep environmental gradients.


Assuntos
Adaptação Biológica/genética , Meio Ambiente , Fluxo Gênico , Rana temporaria/genética , Animais , Finlândia , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Suécia , Suíça
5.
BMC Genet ; 21(1): 38, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228443

RESUMO

BACKGROUND: While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns. RESULTS: We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values. CONCLUSION: Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.


Assuntos
Anuros/genética , Filogenia , Proteínas Citotóxicas Formadoras de Poros/genética , Pele/química , Alelos , Animais , Códon/genética , Frequência do Gene/genética , Polimorfismo Genético , Proteínas Citotóxicas Formadoras de Poros/química
6.
Oecologia ; 192(4): 1013-1022, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32277360

RESUMO

Across latitudinal clines, the juvenile developmental rates of ectotherms often covary with the length of the growing season, due to life-history trade-offs imposed by the time-constrained environments. However, as the start of the growing season often varies substantially across years, adaptive parental effects on juvenile developmental rates may mediate the costs of a delayed season. By employing a meta-analysis, we tested whether larval developmental rates across a latitudinal cline of the common frog (Rana temporaria) are affected by fluctuating onsets of breeding, across years. We predicted that larval developmental rate will be inversely related to the onset of breeding, and that northern populations will be more prone to shorten their developmental rate in response to late breeding, as the costs of delayed metamorphosis should be highest in areas with a shorter growing season. We found that the larval period of both northern and southern populations responded to parental environmental conditions to a similar degree in absolute terms, but in different directions. In northern populations, a late season start correlated with decreased development time, suggesting that the evolution of parental effects aids population persistence in time-constrained environments. In southern populations, late season start correlated with increased development time, which could potentially be explained as a predator avoidance strategy. Our findings suggest that local ecological variables can induce adaptive parental effects, but responses are complex, and likely trade-off with other ecological factors.


Assuntos
Características de História de Vida , Animais , Larva , Metamorfose Biológica , Rana temporaria , Estações do Ano
7.
Dis Aquat Organ ; 140: 209-218, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880378

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in amphibian populations. While Bd is widespread in southern and central Europe, its occurrence and distribution in northernmost Europe is mostly unknown. We surveyed for Bd in breeding anurans in Sweden by sampling 1917 amphibians from 101 localities and 3 regions in Sweden (southern, northern and central). We found that Bd was widespread in southern and central Sweden, occurring in all 9 investigated species and in 45.5% of the 101 localities with an overall prevalence of 13.8%. No infected individuals were found in the 4 northern sites sampled. The records from central Sweden represent the northernmost records of Bd in Europe. While the proportion of sites positive for Bd was similar between the southern and central regions, prevalence was much higher in the southern region. This was because southern species with a distribution mainly restricted to southernmost Sweden had a higher prevalence than widespread generalist species. The nationally red-listed green toad Bufotes variabilis and the fire-bellied toad Bombina bombina had the highest prevalence (61.4 and 48.9%, respectively). Across species, Bd prevalence was strongly positively, correlated with water temperature at the start of egg laying. However, no individuals showing visual signs of chytridiomycosis were found in the field. These results indicate that Bd is widespread and common in southern and central Sweden with southern species, breeding in higher temperatures and with longer breeding periods, having higher prevalence. However, the impact of Bd on amphibian populations in northernmost Europe remains unknown.


Assuntos
Quitridiomicetos , Micoses/veterinária , Anfíbios , Animais , Europa (Continente) , Prevalência , Suécia
8.
Mol Ecol ; 28(12): 2996-3011, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31134695

RESUMO

Stochastic effects from demographic processes and selection are expected to shape the distribution of genetic variation in spatially heterogeneous environments. As the amount of genetic variation is central for long-term persistence of populations, understanding how these processes affect variation over large-scale geographical gradients is pivotal. We investigated the distribution of neutral and putatively adaptive genetic variation, and reconstructed demographic history in the moor frog (Rana arvalis) using 136 individuals from 15 populations along a 1,700-km latitudinal gradient from northern Germany to northern Sweden. Using double digest restriction-site associated DNA sequencing we obtained 27,590 single nucleotide polymorphisms (SNPs), and identified differentiation outliers and SNPs associated with growing season length. The populations grouped into a southern and a northern cluster, representing two phylogeographical lineages from different post-glacial colonization routes. Hybrid index estimation and demographic model selection showed strong support for a southern and northern lineage and evidence of gene flow between regions located on each side of a contact zone. However, patterns of past gene flow over the contact zone differed between neutral and putatively adaptive SNPs. While neutral nucleotide diversity was higher along the southern than the northern part of the gradient, nucleotide diversity in differentiation outliers showed the opposite pattern, suggesting differences in the relative strength of selection and drift along the gradient. Variation associated with growing season length decreased with latitude along the southern part of the gradient, but not along the northern part where variation was lower, suggesting stronger climate-mediated selection in the north. Outlier SNPs included loci involved in immunity and developmental processes.


Assuntos
Variação Genética/genética , Genética Populacional , Ranidae/genética , Seleção Genética/genética , Alelos , Animais , Genômica , Alemanha , Repetições de Microssatélites/genética , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Suécia
9.
Mol Ecol ; 28(11): 2786-2801, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067349

RESUMO

Ectotherm development rates often show adaptive divergence along climatic gradients, but the genetic basis for this variation is rarely studied. Here, we investigated the genetic basis for phenotypic variation in larval development in the moor frog Rana arvalis from five regions along a latitudinal gradient from Germany to northern Sweden. We focused on the C/EBP-1 gene, a transcription factor associated with larval development time. Allele frequencies at C/EBP-1 varied strongly among geographical regions. Overall, the distribution of alleles along the gradient was in concordance with the dual post-glacial colonization routes into Scandinavia, with a large number of alleles exclusively present along the southern colonization route. Only three of 38 alleles were shared between the routes. Analysis of contemporary selection on C/EBP-1 showed divergent selection among the regions, probably reflecting adaptation to the local environmental conditions, although this was especially strong between southern and northern regions coinciding also with lineages from different colonization routes. Overall, the C/EBP-1 gene has historically been under purifying selection, but two specific amino acid positions showed significant signals of positive selection. These positions showed divergence between southern and northern regions, and we suggest that they are functionally involved in the climatic adaptation of larval development. Using phenotypic data from a common garden experiment, we found evidence for specific C/EBP-1 alleles being correlated with larval development time, suggesting a functional role in adaptation of larval development to large-scale climatic variation.


Assuntos
Variação Genética , Geografia , Ranidae/crescimento & desenvolvimento , Ranidae/genética , Seleção Genética , Fatores de Transcrição/metabolismo , Alelos , Animais , Códon/genética , Frequência do Gene/genética , Estudos de Associação Genética , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Lineares , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
J Evol Biol ; 32(4): 356-368, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703260

RESUMO

Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post-glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QST -FST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST , indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST , but we found temperature-dependent adaptive divergence close to the contact zone. These results indicate that lineage-specific variation can account for much of the adaptive divergence along a latitudinal gradient.


Assuntos
Evolução Biológica , Polimorfismo de Nucleotídeo Único/genética , Ranidae/classificação , Ranidae/genética , Migração Animal , Animais , Genética Populacional , Larva , Países Escandinavos e Nórdicos , Temperatura
11.
Dis Aquat Organ ; 134(1): 33-42, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32132271

RESUMO

Human-induced changes of the environment, including landscape alteration and habitat loss, may affect wildlife disease dynamics and have important ramifications for wildlife conservation. Amphibians are among the vertebrate taxa most threatened by anthropogenic habitat change. The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused extinctions and population declines in hundreds of anuran species globally. We studied how the urban landscape is associated with the prevalence of Bd infections by sampling 655 anurans of 3 species (mainly the common toad Bufo bufo) in 42 ponds surrounded by different amounts of urban habitat (defined as towns, cities or villages). We also examined the association between Bd infections and a potential reservoir host species (the moor frog Rana arvalis). We found that 38% of the sites were positive for Bd with an infection prevalence of 4.4%. The extent of urban landscape was negatively correlated with Bd infection prevalence. However, the positive association of Bd with the presence of the possible reservoir species was substantially stronger than the urban effects. The body condition index of B. bufo was negatively associated with Bd infection. This Bd effect was stronger than the negative effect of urban landscape on body condition. Our results suggest that urban environments in Sweden have a negative impact on Bd infections, while the presence of the reservoir species has a positive impact on Bd prevalence. Our study also highlights the potential importance of Bd infection on host fitness, especially in rural landscapes.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Bufo bufo , Micoses/epidemiologia , Prevalência , Suécia/epidemiologia
12.
J Evol Biol ; 31(8): 1216-1226, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802672

RESUMO

Fast-growing genotypes living in time-constrained environments are often more prone to predation, suggesting that growth-predation risk trade-offs are important factors maintaining variation in growth along climatic gradients. However, the mechanisms underlying how fast growth increases predation-mediated mortality are not well understood. Here, we investigated if slow-growing, low-latitude individuals have faster escape swimming speed than fast-growing high-latitude individuals using common frog (Rana temporaria) tadpoles from eight populations collected along a 1500 km latitudinal gradient. We measured escape speed in terms of burst and endurance speeds in tadpoles raised in the laboratory at two food levels and in the presence and absence of a predator (Aeshna dragonfly larvae). We did not find any latitudinal trend in escape speed performance. In low food treatments, burst speed was higher in tadpoles reared with predators but did not differ between high-food treatments. Endurance speed, on the contrary, was lower in high-food tadpoles reared with predators and did not differ between treatments at low food levels. Tadpoles reared with predators showed inducible morphology (increased relative body size and tail depth), which had positive effects on speed endurance at low but not at high food levels. Burst speed was positively affected by tail length and tail muscle size in the absence of predators. Our results suggest that escape speed does not trade-off with fast growth along the latitudinal gradient in R. temporaria tadpoles. Instead, escape speed is a plastic trait and strongly influenced by the interaction between resource level and predation risk.


Assuntos
Reação de Fuga/fisiologia , Comportamento Predatório , Ranidae/genética , Ranidae/fisiologia , Natação/fisiologia , Distribuição Animal , Animais , Alimentos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ranidae/crescimento & desenvolvimento , Fatores de Risco
13.
BMC Evol Biol ; 17(1): 189, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806900

RESUMO

BACKGROUND: Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. RESULTS: Using outlier analyses, we identified the MHC II exon 2 (corresponding to the ß-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. CONCLUSION: Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.


Assuntos
Alelos , Anfíbios/genética , Migração Animal/fisiologia , Deriva Genética , Genética Populacional , Geografia , Seleção Genética , Animais , Mudança Climática , Éxons/genética , Loci Gênicos , Variação Genética , Heterozigoto , Antígenos de Histocompatibilidade Classe II/genética , Repetições de Microssatélites/genética , Densidade Demográfica
14.
J Anim Ecol ; 86(1): 128-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27779740

RESUMO

In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra- and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments.


Assuntos
Meio Ambiente , Metamorfose Biológica , Ranidae/crescimento & desenvolvimento , Animais , Feminino , Larva , Masculino , Suécia
15.
Mol Ecol ; 25(18): 4564-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482650

RESUMO

When similar selection acts on the same traits in multiple species or populations, parallel evolution can result in similar phenotypic changes, yet the underlying molecular architecture of parallel phenotypic divergence can be variable. Maternal effects can influence evolution at ecological timescales and facilitate local adaptation, but their contribution to parallel adaptive divergence is unclear. In this study, we (i) tested for variation in embryonic acid tolerance in a common garden experiment and (ii) used molecular phenotyping of egg coats to investigate the molecular basis of maternally mediated parallel adaptive divergence in two amphibian species (Rana arvalis and Rana temporaria). Our results on three R. arvalis and two R. temporaria populations show that adaptive divergence in embryonic acid tolerance is mediated via maternally derived egg coats in both species. We find extensive polymorphism in egg jelly coat glycoproteins within both species and that acid-tolerant clutches have more negatively charged egg jelly - indicating that the glycosylation status of the jelly coat proteins is under divergent selection in acidified environments, likely due to its impact on jelly water balance. Overall, these data provide evidence for parallel mechanisms of adaptive divergence in two species. Our study highlights the importance of studying intraspecific molecular variation in egg coats and, specifically, their glycoproteins, to increase understanding of underlying forces maintaining variation in jelly coats.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Anfíbios/genética , Proteínas do Ovo/genética , Rana temporaria/genética , Ranidae/genética , Ácidos/química , Animais , Meio Ambiente , Feminino , Óvulo , Fenótipo , Suécia
16.
Ecology ; 97(9): 2470-2478, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859081

RESUMO

As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change.


Assuntos
Cruzamento , Comportamento Predatório , Ranidae/fisiologia , Animais , Anuros , Larva
17.
Oecologia ; 179(3): 617-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25983113

RESUMO

Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.


Assuntos
Ácidos , Adaptação Fisiológica , Variação Genética , Óvulo/fisiologia , Ranidae/fisiologia , Estresse Fisiológico , Equilíbrio Hidroeletrolítico , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Ecossistema , Glicosilação , Concentração de Íons de Hidrogênio , Polissacarídeos/genética , Ranidae/genética , Reprodução/genética , Água
18.
Proc Biol Sci ; 281(1780): 20133266, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24552840

RESUMO

Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Ranidae/fisiologia , Seleção Genética , Estresse Fisiológico , Animais , Fenótipo , Dinâmica Populacional , Comportamento Predatório
19.
Ecology ; 95(6): 1520-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039217

RESUMO

Invasive alien predators can impose strong selection on native prey populations and induce rapid evolutionary change in the invaded communities. However, studies on evolutionary responses to invasive predators are often complicated by the lack of replicate populations differing in coexistence time with the predator, which would allow the determination of how prey traits change during the invasion. The red swamp crayfish Procambarus clarkii has invaded many freshwater areas worldwide, with negative impacts for native fauna. Here, we examined how coexistence time shapes antipredator responses of the Iberian waterfrog (Pelophylax perezi) to the invasive crayfish by raising tadpoles from five populations differing in historical exposure to P. clarkii (30 years, 20 years, or no coexistence). Tadpoles from non-invaded populations responded to the presence of P. clarkii with behavioral plasticity (reduced activity), whereas long-term invaded populations showed canalized antipredator behavior (constant low activity level). Tadpoles from one of the long-term invaded populations responded to the crayfish with inducible morphological defenses (deeper tails), reflecting the use of both constitutive and inducible antipredator defenses against the exotic predator by this population. Our results suggest that, while naive P. perezi populations responded behaviorally to P. clarkii, the strong predation pressure imposed by the crayfish has induced the evolution of qualitatively different antipredator defenses in populations with longer coexistence time. These responses suggest that strong selection by invasive predators may drive rapid evolutionary change in invaded communities. Examining responses of prey species to biological invasions using multiple populations will help us better forecast the impact of invasive predators in natural communities.


Assuntos
Astacoidea/fisiologia , Evolução Biológica , Espécies Introduzidas , Ranidae/fisiologia , Animais , Comportamento Animal , Ecossistema , Larva , Ranidae/genética , Fatores de Tempo
20.
Oecologia ; 174(1): 131-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23996230

RESUMO

Organisms normally grow at a sub-maximal rate. After experiencing a period of arrested growth, individuals often show compensatory growth responses by modifying their life-history, behaviour and physiology. However, the strength of compensatory responses may vary across broad geographic scales as populations differ in their exposition to varying time constraints. We examined differences in compensatory growth strategies in common frog (Rana temporaria) populations from southern and northern Sweden. Tadpoles from four populations were reared in the laboratory and exposed to low temperature to evaluate the patterns and mechanisms of compensatory growth responses. We determined tadpoles' growth rate, food intake and growth efficiency during the compensation period. In the absence of arrested growth conditions, tadpoles from all the populations showed similar (size-corrected) growth rates, food intake and growth efficiency. After being exposed to low temperature for 1 week, only larvae from the northern populations increased growth rates by increasing both food intake and growth efficiency. These geographic differences in compensatory growth mechanisms suggest that the strategies for recovering after a period of growth deprivation may depend on the strength of time constraints faced by the populations. Due to the costs of fast growth, only populations exposed to the strong time constraints are prone to develop fast recovering strategies in order to metamorphose before conditions deteriorate. Understanding how organisms balance the cost and benefits of growth strategies may help in forecasting the impact of fluctuating environmental conditions on life-history strategies of populations likely to be exposed to increasing environmental variation in the future.


Assuntos
Meio Ambiente , Rana temporaria/crescimento & desenvolvimento , Animais , Temperatura Baixa , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Suécia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa