Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047677

RESUMO

This study aimed to enhance homology-directed repair (HDR) efficiency in CRISPR/Cas-mediated genome editing by targeting three key factors regulating the balance between HDR and non-homologous end joining (NHEJ): MAD2L2, SCAI, and Ligase IV. In order to achieve this, a cellular model using mutated eGFP was designed to monitor HDR events. Results showed that MAD2L2 knockdown and SCR7 treatment significantly improved HDR efficiency during Cas9-mediated HDR repair of the mutated eGFP gene in the HEK293T cell line. Fusion protein Cas9-SCAI did not improve HDR. This study is the first to demonstrate that MAD2L2 knockdown during CRISPR-mediated gene editing in HEK293T cells can increase precise correction by up to 10.2 times. The study also confirmed a moderate but consistent effect of SCR7, an inhibitor of Ligase IV, which increased HDR by 1.7 times. These findings provide valuable insights into improving HDR-based genome editing efficiency.


Assuntos
Sistemas CRISPR-Cas , Proteínas Mad2 , Reparo de DNA por Recombinação , Fatores de Transcrição , Humanos , Reparo do DNA por Junção de Extremidades , Edição de Genes/métodos , Células HEK293 , Ligases/genética , Proteínas Mad2/genética , Fatores de Transcrição/genética
2.
Curr Genet ; 68(1): 39-48, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34515826

RESUMO

The recently discovered CRISPR-Cas9 modification, base editors (BEs), is considered as one of the most promising tools for correcting disease-causing mutations in humans, since it allows point substitutions to be edited without generating double-stranded DNA breaks, and, therefore, with a significant decrease in non-specific activity. Until recently, this method was considered the safest, but at the same time, it is quite effective. However, recent studies of non-specific activity of BEs revealed that some of them lead to the formation of a huge number of off-targets in both DNA and RNA, occurring due to the nature of the Cas9-fused proteins used. In this review article, we have considered and combined data from numerous studies about the most commonly used and more described in detail APOBEC-based BEs and Target-AID version of CBE, as well as ABE7 and ABE8 with their basic modifications into TadA to improve BEs' specificity. In our opinion, modern advances in molecular genetics make it possible to dramatically reduce the off-target activity of base editors due to introducing mutations into the domains of deaminases or inhibition of Cas9 by anti-CRISPR proteins, which returns BEs to the leading position in genome editing technologies.


Assuntos
Sistemas CRISPR-Cas , Citosina , Citosina/metabolismo , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Humanos , Mutação
3.
Biochemistry (Mosc) ; 87(5): 464-471, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35790380

RESUMO

Gene editing allows to make a variety of targeted changes in genome, which can potentially be used to treat hereditary human diseases. Despite numerous studies in this area, effectiveness of gene editing methods for correcting mutations is still low, so these methods are not allowed in routine practice. It has been shown that rational design of genome editing components can significantly increase efficiency of mutation correction. In this work, we propose design of single-stranded oligodeoxyribonucleotides (ssODNs) to increase efficiency of gene editing. Using a model system to repair knocked out EGFP that is integrated into the genome of HEK293T cell culture, we have shown that only a small part of ssODN (about 20 nucleotides: from the 15th nucleotide at 3'-end to the 4th nucleotide at 5'-end), a donor molecule for repairing double-stranded DNA breaks, is integrated into the site of the break. Based on the obtained data, it is possible to rationally approach the design of ssODNs to correct mutations using CRISPR-Cas9 method for the development of gene therapy for hereditary human diseases.


Assuntos
Edição de Genes , Nucleotídeos , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação
4.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682671

RESUMO

Genome editing is currently widely used in biomedical research; however, the use of this method in the clinic is still limited because of its low efficiency and possible side effects. Moreover, the correction of mutations that cause diseases in humans seems to be extremely important and promising. Numerous attempts to improve the efficiency of homology-directed repair-mediated correction of mutations in mammalian cells have focused on influencing the cell cycle. Homology-directed repair is known to occur only in the late S and G2 phases of the cell cycle, so researchers are looking for safe ways to enrich the cell culture with cells in these phases of the cell cycle. This review surveys the main approaches to influencing the cell cycle in genome editing experiments (predominantly using Cas9), for example, the use of cell cycle synchronizers, mitogens, substances that affect cyclin-dependent kinases, hypothermia, inhibition of p53, etc. Despite the fact that all these approaches have a reversible effect on the cell cycle, it is necessary to use them with caution, since cells during the arrest of the cell cycle can accumulate mutations, which can potentially lead to their malignant transformation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Divisão Celular , Humanos , Mamíferos/genética , Reparo de DNA por Recombinação
5.
Genet Med ; 23(7): 1246-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824500

RESUMO

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Sequenciamento do Exoma
6.
Hum Genet ; 138(1): 1-19, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390160

RESUMO

Despite the recent discover of genome-editing methods, today we can say these approaches have firmly entered our life. Two approaches-knocking out malfunctioning gene allele or correcting the mutation with precise knock-in-can be used in hereditary monogenic diseases treatment. The latter approach is relatively ineffective. Modern data about the ways of repair of double-strand DNA breaks formed by nucleases are presented in this review. The main part of the review is devoted to the ways of increasing precise and effective knock-in: inhibition of non-homologous end joining and stimulation of homology-directed repair key factors, use of small molecules with unknown mechanism of action, cell-cycle synchronization and cell-cycle-dependent activity of Cas9, donor molecule design, selection, alternative methods for insertion and other approaches.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Engenharia Genética/métodos , Humanos
7.
BMC Genet ; 17 Suppl 1: 14, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26822197

RESUMO

BACKGROUND: Genome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy. RESULTS: We analyzed exome variations between optimal responders and failures and found 7 variants in cancer-related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA). CONCLUSION: We found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. Normal genetic variation may influence therapy efficacy during targeted treatment of cancers.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Adulto , Exoma , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Masculino , Prognóstico
8.
Curr Gene Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623982

RESUMO

The development of gene therapy using genome editing tools recently became relevant. With the invention of programmable nucleases, it became possible to treat hereditary diseases due to introducing targeted double strand break in the genome followed by homology directed repair (HDR) or non-homologous end-joining (NHEJ) reparation. CRISPR-Cas9 is more efficient and easier to use in comparison with other programmable nucleases. To improve the efficiency and safety of this gene editing tool, various modifications CRISPR-Cas9 basis were created in recent years, such as prime editing - in this system, Cas9 nickase is fused with reverse transcriptase and guide RNA, which contains a desired correction. Prime editing demonstrates equal or higher correction efficiency as HDR-mediated editing and much less off-target effect due to inducing nick. There are several studies in which prime editing is used to correct mutations in which researchers reported little or no evidence of off-target effects. The system can also be used to functionally characterize disease variants. However, prime editing still has several limitations that could be further improved. The effectiveness of the method is not yet high enough to apply it in clinical trials. Delivery of prime editors is also a big challenge due to their size. In the present article, we observe the development of the platform, and discuss the candidate proteins for efficiency enhancing, main delivery methods and current applications of prime editing.

9.
Mol Biotechnol ; 65(2): 181-195, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35322386

RESUMO

The efficient delivery of CRISPR-Cas components is still a key and unsolved problem. CRISPR-Cas delivery in the form of a Cas protein+sgRNA (ribonucleoprotein complex, RNP complex), has proven to be extremely effective, since it allows to increase on-target activity, while reducing nonspecific activity. The key point for in vivo genome editing is the direct delivery of artificial nucleases and donor DNA molecules into the somatic cells of an adult organism. At the same time, control of the dose of artificial nucleases is impossible, which affects the efficiency of genome editing in the affected cells. Poor delivery efficiency and low editing efficacy reduce the overall potency of the in vivo genome editing process. Here we review how this problem is currently being solved in scientific works and what types of in vivo delivery methods of Cas9/sgRNA RNPs have been developed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
10.
Photochem Photobiol ; 99(1): 29-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35567504

RESUMO

We needed effective and sustainable technologies for better microbiological control of crops, including Fusarium. However, photoluminescent UV-Vis methods are potential for diagnosing plant diseases with Fusarium. It has not been sufficiently studied despite the application of these methods for other biological researches. The excitation spectrum of the seeds during infection shifts to the shorter wavelength and a new maximum appears in the region λ ≈ 232 nm. The photoluminescence of infected seeds increases with excitation by radiation of wavelengths λe,1 = 232 nm, λe,2 = 362 nm and λe,3 = 424 nm by 1.33-3.14 times, and λe,3 = 424 nm-decreases by 1.1 times. Statistical moments µ3 and µ4 , asymmetry and kurtosis change only with short-wave excitation. When analyzing the decomposition of the frequency spectrum into Gaussian curves, the most informative ratio is the ratio of right-handed and left-handed Gaussians under excitation λe,2 = 362 nm and λe,3 = 424 nm. The ratios of their maxima change during infection by 1.36-3.2 times, and for excitation by radiation λe,2 , the frequency boundaries of Gaussians change. The results of measurements and calculations provide a basis for the development of a method and device for photoluminescence diagnostics of fusarium seeds in UV-Vis ranges.


Assuntos
Fusarium , Hordeum , Hordeum/microbiologia , Sementes
11.
Sci Rep ; 11(1): 16728, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408227

RESUMO

The main types of thyroid neoplasms, follicular adenoma (FA), follicular thyroid carcinoma (FTC), classical and follicular variants of papillary carcinoma (clPTC and fvPTC), and anaplastic thyroid carcinoma (ATC), differ in prognosis, progression rate and metastatic behaviour. Specific patterns of lncRNAs involved in the development of clinical and morphological features can be presumed. LncRNA landscapes within distinct benign and malignant histological variants of thyroid neoplasms were not investigated. The aim of the study was to discover long noncoding RNA landscapes common and specific to major benign and malignant histological subtypes of thyroid neoplasms. LncRNA expression in FA, FTC, fvPTC, clPTC and ATC was analysed with comprehensive microarray and RNA-Seq datasets. Putative biological functions were evaluated via enrichment analysis of coexpressed coding genes. In the results, lncRNAs common and specific to FTC, clPTC, fvPTC, and ATC were identified. The discovered lncRNAs are putatively involved in L1CAM interactions, namely, pre-mRNA processing (lncRNAs specific to FTC); PCP/CE and WNT pathways (lncRNAs specific to fvPTC); extracellular matrix organization (lncRNAs specific to clPTC); and the cell cycle (lncRNAs specific to ATC). Known oncogenic and suppressor lncRNAs (RMST, CRNDE, SLC26A4-AS1, NR2F1-AS1, and LINC00511) were aberrantly expressed in thyroid carcinomas. These findings enhance the understanding of lncRNAs in the development of subtype-specific features in thyroid cancer.


Assuntos
Adenocarcinoma Folicular , Adenoma , RNA Longo não Codificante , RNA Neoplásico , Câncer Papilífero da Tireoide , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Adenoma/genética , Adenoma/metabolismo , Humanos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
12.
BMC Med Genomics ; 13(Suppl 8): 80, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948190

RESUMO

BACKGROUND: Single nucleotide variants account for approximately 90% of all known pathogenic variants responsible for human diseases. Recently discovered CRISPR/Cas9 base editors can correct individual nucleotides without cutting DNA and inducing double-stranded breaks. We aimed to find all possible pathogenic variants which can be efficiently targeted by any of the currently described base editors and to present them for further selection and development of targeted therapies. METHODS: ClinVar database (GRCh37_clinvar_20171203) was used to search and select mutations available for current single-base editing systems. We included only pathogenic and likely pathogenic variants for further analysis. For every potentially editable mutation we checked the presence of PAM. If a PAM was found, we analyzed the sequence to find possibility to edit only one nucleotide without changing neighboring nucleotides. The code of the script to search Clinvar database and to analyze the sequences was written in R and is available in the appendix. RESULTS: We analyzed 21 editing system currently reported in 9 publications. Every system has different working characteristics such as the editing window and PAM sequence. C > T base editors can precisely target 3196 mutations (46% of all pathogenic T > C variants), and A > G editors - 6900 mutations (34% of all pathogenic G > A variants). CONCLUSIONS: Protein engineering helps to develop new enzymes with a narrower window of base editors as well as using new Cas9 enzymes with different PAM sequences. But, even now the list of mutations which can be targeted with currently available systems is huge enough to choose and develop new targeted therapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Proteína 9 Associada à CRISPR , Bases de Dados de Ácidos Nucleicos , Doença/genética , Genoma Humano , Humanos
13.
PLoS One ; 15(11): e0242094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175893

RESUMO

Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Células Cultivadas , Reparo do DNA , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
14.
BMC Med Genomics ; 12(Suppl 2): 37, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871622

RESUMO

BACKGROUND: Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients. METHODS: Newly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients. RESULTS: The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups. CONCLUSIONS: Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients.


Assuntos
Exoma , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Transcriptoma , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Genótipo , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Prognóstico , Resultado do Tratamento , Adulto Jovem
15.
Thyroid ; 28(2): 158-167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29281951

RESUMO

BACKGROUND: Gene fusions are known in many cancers as driver or passenger mutations. They play an important role in both the etiology and pathogenesis of cancer and are considered as potential diagnostic and prognostic markers and possible therapeutic targets. The spectrum and prevalence of gene fusions in thyroid cancer ranges from single cases up to 80%, depending on the specific type of cancer. During last three years, massive parallel sequencing technologies have revealed new fusions and allowed detailed characteristics of fusions in different types of thyroid cancer. SUMMARY: This article reviews all known fusions and their prevalence in papillary, poorly differentiated and anaplastic, follicular, and medullary carcinomas. The mechanisms of fusion formation are described. In addition, the mechanisms of oncogenic transformation, such as altered gene expression, forced oligomerization, and subcellular localization, are given. CONCLUSION: The prognostic value and perspectives of the utilization of gene fusions as therapeutic targets are discussed.


Assuntos
Adenocarcinoma Folicular/genética , Carcinoma Medular/genética , Carcinoma Papilar/genética , Fusão Oncogênica , Neoplasias da Glândula Tireoide/genética , Adenocarcinoma Folicular/patologia , Carcinoma Medular/patologia , Carcinoma Papilar/patologia , Rearranjo Gênico , Humanos , Neoplasias da Glândula Tireoide/patologia
16.
PLoS One ; 12(9): e0182901, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902850

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the presence of BCR/ABL fusion gene in leukemic cells, which promotes uncontrolled cell proliferation. Up to 20% of CML patients show primary resistance or non-optimal response to tyrosine kinase inhibitor (TKI) therapy. We investigated the association between copy number variation (CNV) in glutathione S-transferases (GST) and cytochromes (CYP) and the response rate to TKI. We enrolled 47 patients with CML: 31 with an optimal response and 16 with failure at 6 months in accordance with European LeukemiaNet 2013 recommendations. CNV detection was performed using SALSA MLPA P128-C1 Cytochrome P450 probe mix. Patients with optimal response and with failure of TKI therapy showed different frequencies of wild type and mutated CYPs and GST (p<0.0013). Validation in the group of 15 patients proved high prognostic value (p = 0.02): positive and negative predictive value 83% and 78%; sensitivity and specificity 71% and 88%. Wild type genotypes of CYP and GST associate with a worse response to TKI treatment in CML patients. This test can be recommended for further clinical trials.


Assuntos
Citocromos/genética , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Glutationa Transferase/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto Jovem
17.
Leuk Lymphoma ; 57(7): 1669-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26759060

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disease well treated by tyrosine kinase inhibitors (TKIs). The aim was to identify genes with a predictive value for relapse-free survival after TKI cessation in CML patients. We performed whole-exome sequencing of DNA from six CML patients in long-lasting deep molecular remission. Patients were divided into two groups with relapse (n = 3) and without relapse (n = 3) after TKI discontinuation. We found variants in genes CYP1B1, ALPK2, and IRF1 in group of patients with relapse and one variant in gene PARP9 in group of patients without relapse. We verified prognostic value of the found markers in a small group of patients with TKI discontinuation and demonstrated their high sensitivity (77%), specificity (86%), positive (85%), and negative (79%) predictive values. Thus we revealed genetic variants, which are potential markers of outcome prediction in CML patients after TKI discontinuation.


Assuntos
Biomarcadores Tumorais , Sequenciamento do Exoma , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Adulto , Alelos , Antineoplásicos/uso terapêutico , Biologia Computacional , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva
18.
PLoS One ; 10(3): e0118350, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775427

RESUMO

Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.


Assuntos
Núcleo Celular/metabolismo , Centrômero/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Diferenciação Celular/genética , Núcleo Celular/ultraestrutura , Centrômero/ultraestrutura , Cromossomos Humanos 6-12 e X , Cromossomos Humanos Par 18 , Epigênese Genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células
20.
Blood Cells Mol Dis ; 35(2): 182-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16055358

RESUMO

Hereditary hemochromatosis (HH) is a common cause of primary iron overload induced by genetic impairment of iron metabolism. More than 80% of HH patients in populations of European origin are homozygotes for a single mutation C282Y, or compound heterozygotes for C282Y and H63D mutations in the HFE gene. However, in the majority of Asian, African, Australasian, and Amerindian populations, frequencies of C282Y are close to zero. Data on the prevalence of HFE mutations in Russian population and in Russian patients with HH are very limited. In this work, we determined frequencies of C282Y and H63D in ethnical Russians living in the Central European region of Russia. Furthermore, we tested whether homozygocity for C282Y is the major cause of HH in Russians. We found that, in the Russian population, the frequency of C282Y mutation in the HFE gene is relatively high and corresponds to mean European levels. However, in contrast to the majority of European populations, homozygocity for C282Y is found only in a small proportion (5%) of patients with biochemical and clinical signs of HH. These data suggest that either the penetrance of C282Y in Russia is lower than in Western countries, or that a more frequent non-HFE dependent mechanism of primary iron overload dominates in Russian population.


Assuntos
Hemocromatose/genética , Mutação de Sentido Incorreto , Frequência do Gene , Testes Genéticos , Genótipo , Haplótipos , Hemocromatose/epidemiologia , Humanos , Sobrecarga de Ferro/epidemiologia , Sobrecarga de Ferro/etiologia , Epidemiologia Molecular , Federação Russa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa