Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(8): 100588, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969065

RESUMO

Lipoprotein(a) [Lp(a)] contributes to cardiovascular disease risk. A genetically determined size polymorphism in apolipoprotein(a) [apo(a)], determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Nongenetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (±SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. Following the 10-week intervention, Lp(a) level was reduced by an average (±SEM) of -13.2% ± 4.3% in all participants (P = 0.005); -15.3% ± 7.8% in the 15 participants who consumed glucose (P = 0.07); and -11.3% ± 4.5% in the 17 participants who consumed fructose (P = 0.02), without any significant difference in the effect between the two sugar groups. Relative changes in Lp(a) levels were similar across subgroups of lower versus higher baseline Lp(a) level or carrier versus noncarrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.

2.
J Lipid Res ; 64(9): 100420, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482217

RESUMO

Reducing dietary saturated fatty acids (SFA) intake results in a clinically significant lowering of low-density lipoprotein cholesterol (LDL-C) across ethnicities. In contrast, dietary SFA's role in modulating emerging cardiovascular risk factors in different ethnicities remains poorly understood. Elevated levels of lipoprotein(a) [Lp(a)], an independent cardiovascular risk factor, disproportionally affect individuals of African descent. Here, we assessed the responses in Lp(a) levels to dietary SFA reduction in 166 African Americans enrolled in GET-READI (The Gene-Environment Trial on Response in African Americans to Dietary Intervention), a randomized controlled feeding trial. Participants were fed two diets in random order for 5 weeks each: 1) an average American diet (AAD) (37% total fat: 16% SFA), and 2) a diet similar to the Dietary Approaches to Stop Hypertension (DASH) diet (25% total fat: 6% SFA). The participants' mean age was 35 years, 70% were women, the mean BMI was 28 kg/m2, and the mean LDL-C was 116 mg/dl. Compared to the AAD diet, LDL-C was reduced by the DASH-type diet (mean change: -12 mg/dl) as were total cholesterol (-16 mg/dl), HDL-C (-5 mg/dl), apoA-1 (-9 mg/dl) and apoB-100 (-5 mg/dl) (all P < 0.0001). In contrast, Lp(a) levels increased following the DASH-type diet compared with AAD (median: 58 vs. 44 mg/dl, P < 0.0001). In conclusion, in a large cohort of African Americans, reductions in SFA intake significantly increased Lp(a) levels while reducing LDL-C. Future studies are warranted to elucidate the mechanism(s) underlying the SFA reduction-induced increase in Lp(a) levels and its role in cardiovascular risk across populations.


Assuntos
Negro ou Afro-Americano , Dieta , Gorduras na Dieta , Adulto , Feminino , Humanos , Masculino , LDL-Colesterol/sangue , Gorduras na Dieta/administração & dosagem , Lipoproteína(a)/sangue
3.
Am J Clin Nutr ; 118(1): 23-26, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178716

RESUMO

In this perspective, we discuss new evidence relating to current dietary recommendations to reduce SFA intake to modulate an individual's global risk of CVD. Although it is well established that lowering dietary SFA intake has a beneficial effect on LDL cholesterol concentrations, findings increasingly indicate an opposite effect on lipoprotein(a) [Lp(a)] concentrations. In recent years, many studies have firmly established a role for an elevated Lp(a) concentration as a genetically regulated, causal, and prevalent risk factor for CVD. However, there is less awareness of the effect of dietary SFA intake on Lp(a) concentrations. This study discusses this issue and highlights the contrasting effect of reducing dietary SFA intake on LDL cholesterol and Lp(a), 2 highly atherogenic lipoproteins. This calls attention to the need for precision nutrition approaches that move beyond a "one-size-fits-all" approach. To illustrate the contrast, we describe the dynamic contributions of Lp(a) and LDL cholesterol concentrations to CVD risk during interventions with a low-SFA diet, with the hope that this will stimulate further studies and discussions regarding dietary management of CVD risk.


Assuntos
Doenças Cardiovasculares , Gorduras na Dieta , Humanos , Gorduras na Dieta/farmacologia , LDL-Colesterol , Lipoproteína(a) , Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos , Dieta , Comportamento de Redução do Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa