Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Phys ; 47(2): 171-190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34036473

RESUMO

Non-invasive estimation of the pressure gradient in cardiovascular stenosis has much clinical importance in assisting the diagnosis and treatment of stenotic diseases. In this research, a systematic comparison is conducted to investigate the accuracy of a group of stenosis models against the MRI- and catheter-measured patient data under the aortic coarctation condition. Eight analytical stenosis models, including six from the literature and two proposed in this study, are investigated to examine their prediction accuracy against the clinical data. The two improved models proposed in this study consider comprehensively the Poiseuille loss, the Bernoulli loss in its exact form, and the entrance effect, of the blood flow. Comparison of the results shows that one of the proposed models demonstrates a cycle-averaged mean prediction error of -0.15 ± 3.03 mmHg, a peak-to-peak prediction error of -1.8 ± 6.89 mmHg, which is the best among the models studied.


Assuntos
Coartação Aórtica , Coartação Aórtica/diagnóstico , Constrição Patológica , Hemodinâmica , Humanos
2.
J Med Internet Res ; 16(1): e23, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24463466

RESUMO

BACKGROUND: Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. OBJECTIVE: The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. METHODS: The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. RESULTS: The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. CONCLUSIONS: This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.


Assuntos
Simulação por Computador , Internet , Integração de Sistemas , Interface Usuário-Computador , Estudos de Viabilidade , Humanos
3.
Heart ; 110(16): 1048-1055, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38754969

RESUMO

BACKGROUND: The practical application of 'virtual' (computed) fractional flow reserve (vFFR) based on invasive coronary angiogram (ICA) images is unknown. The objective of this cohort study was to investigate the potential of vFFR to guide the management of unselected patients undergoing ICA. The hypothesis was that it changes management in >10% of cases. METHODS: vFFR was computed using the Sheffield VIRTUheart system, at five hospitals in the North of England, on 'all-comers' undergoing ICA for non-ST-elevation myocardial infarction acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). The cardiologists' management plan (optimal medical therapy, percutaneous coronary intervention (PCI), coronary artery bypass surgery or 'more information required') and confidence level were recorded after ICA, and again after vFFR disclosure. RESULTS: 517 patients were screened; 320 were recruited: 208 with ACS and 112 with CCS. The median vFFR was 0.82 (0.70-0.91). vFFR disclosure did not change the mean number of significantly stenosed vessels per patient (1.16 (±0.96) visually and 1.18 (±0.92) with vFFR (p=0.79)). A change in intended management following vFFR disclosure occurred in 22% of all patients; in the ACS cohort, there was a 62% increase in the number planned for medical management, and in the CCS cohort, there was a 31% increase in the number planned for PCI. In all patients, vFFR disclosure increased physician confidence from 8 of 10 (7.33-9) to 9 of 10 (8-10) (p<0.001). CONCLUSION: The addition of vFFR to ICA changed intended management strategy in 22% of patients, provided a detailed and specific 'all-in-one' anatomical and physiological assessment of coronary artery disease, and was accompanied by augmentation of the operator's confidence in the treatment strategy.


Assuntos
Síndrome Coronariana Aguda , Angiografia Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Feminino , Masculino , Pessoa de Meia-Idade , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/fisiopatologia , Síndrome Coronariana Aguda/diagnóstico por imagem , Idoso , Intervenção Coronária Percutânea/métodos , Inglaterra , Infarto do Miocárdio/terapia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia
4.
Platelets ; 24(3): 226-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22746279

RESUMO

We present a method for identifying and analysing unusually large von Willebrand factor (ULVWF)-platelet strings in noisy low-quality images. The method requires relatively inexpensive, non-specialist equipment and allows multiple users to be employed in the capture of images. Images are subsequently enhanced and analysed, using custom-written software to perform the processing tasks. The formation and properties of ULVWF-platelet strings released in in vitro flow-based assays have recently become a popular research area. Endothelial cells are incorporated into a flow chamber, chemically stimulated to induce ULVWF release and perfused with isolated platelets which are able to bind to the ULVWF to form strings. The numbers and lengths of the strings released are related to characteristics of the flow. ULVWF-platelet strings are routinely identified by eye from video recordings captured during experiments and analysed manually using basic NIH image software to determine the number of strings and their lengths. This is a laborious, time-consuming task and a single experiment, often consisting of data from four to six dishes of endothelial cells, can take 2 or more days to analyse. The method described here allows analysis of the strings to provide data such as the number and length of strings, number of platelets per string and the distance between each platelet to be found. The software reduces analysis time, and more importantly removes user subjectivity, producing highly reproducible results with an error of less than 2% when compared with detailed manual analysis.


Assuntos
Plaquetas/metabolismo , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Fator de von Willebrand/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Humanos , Processamento de Imagem Assistida por Computador , Ligação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fator de von Willebrand/química
5.
Front Cardiovasc Med ; 10: 1159160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485258

RESUMO

Background: Increased coronary microvascular resistance (CMVR) is associated with coronary microvascular dysfunction (CMD). Although CMD is more common in women, sex-specific differences in CMVR have not been demonstrated previously. Aim: To compare CMVR between men and women being investigated for chest pain. Methods and results: We used a computational fluid dynamics (CFD) model of human coronary physiology to calculate absolute CMVR based on invasive coronary angiographic images and pressures in 203 coronary arteries from 144 individual patients. CMVR was significantly higher in women than men (860 [650-1,205] vs. 680 [520-865] WU, Z = -2.24, p = 0.025). None of the other major subgroup comparisons yielded any differences in CMVR. Conclusion: CMVR was significantly higher in women compared with men. These sex-specific differences may help to explain the increased prevalence of CMD in women.

6.
Lancet Digit Health ; 5(7): e467-e476, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37391266

RESUMO

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnóstico
7.
Nat Cardiovasc Res ; 1(7): 611-616, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865080

RESUMO

Fractional flow reserve (FFR) is the current gold-standard invasive assessment of coronary artery disease (CAD). FFR reports coronary blood flow (CBF) as a fraction of a hypothetical and unknown normal value. Although used routinely to diagnose CAD and guide treatment, how accurately FFR predicts actual CBF changes remains unknown. Here we compared fractional CBF with the absolute CBF (aCBF in mL/min), measured with a computational method during standard angiography and pressure-wire assessment, on 203 diseased arteries (143 patients). We found a substantial correlation between the two measurements (r 0.89, Cohen's Kappa 0.71). Concordance between fractional and absolute CBF reduction was high when FFR was >0.80 (91%), but reduced when FFR was ≤0.80 (81%), 0.70-0.80 (68%) and, particularly 0.75-0.80 (62%). Discordance was associated with coronary microvascular resistance, vessel diameter and mass of myocardium subtended, all factors to which FFR is agnostic. Assessment of aCBF complements FFR, and may be valuable to assess CBF, particularly in cases within the FFR 'grey-zone'.

8.
Eur Heart J Digit Health ; 3(3): 481-488, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36712154

RESUMO

Aims: Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning (ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR. Methods and results: Patients with chronic coronary syndromes underwent coronary angiography with FFR assessment. Vessel-specific CMVR was computed using a three-dimensional computational fluid dynamics simulation with invasively measured proximal and distal pressures applied as boundary conditions. Predictive models were created using non-linear autoregressive moving average with exogenous input (NARMAX) modelling with computed CMVR as the dependent variable. Angio-FFR (VIRTUheart™) was computed using previously described methods. Three simulations were run: using a generic CMVR value (Model A); using ML-predicted CMVR based upon simple clinical data (Model B); and using ML-predicted CMVR also incorporating echocardiographic data (Model C). The diagnostic (FFR ≤ or >0.80) and absolute accuracies of these models were compared. Eighty-four patients underwent coronary angiography with FFR assessment in 157 vessels. The mean measured FFR was 0.79 (±0.15). The diagnostic and absolute accuracies of each personalized model were: (A) 73% and ±0.10; (B) 81% and ±0.07; and (C) 89% and ±0.05, P < 0.001. Conclusion: The accuracy of angio-FFR was dependent in part upon CMVR estimation. Personalization of CMVR from standard clinical data resulted in a significant reduction in angio-FFR error.

9.
Eur Heart J Digit Health ; 2(4): 616-625, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35599684

RESUMO

Aims: International guidelines mandate the use of fractional flow reserve (FFR) and/or non-hyperaemic pressure ratios to assess the physiological significance of moderate coronary artery lesions to guide revascularization decisions. However, they remain underused such that visual estimation of lesion severity continues to be the predominant decision-making tool. It would be pragmatic to have an improved understanding of the relationship between lesion morphology and haemodynamics. The aim of this study was to compute virtual FFR (vFFR) in idealized coronary artery geometries with a variety of stenosis and vessel characteristics. Methods and results: Coronary artery geometries were modelled, based upon physiologically realistic branched arteries. Common stenosis characteristics were studied, including % narrowing, length, eccentricity, shape, number, position relative to branch, and distal (myocardial) resistance. Computational fluid dynamics modelling was used to calculate vFFRs using the VIRTUheart™ system. Percentage lesion severity had the greatest effect upon FFR. Any ≥80% diameter stenosis in two views (i.e. concentric) was physiologically significant (FFR ≤ 0.80), irrespective of length, shape, or vessel diameter. Almost all eccentric stenoses and all 50% concentric stenoses were physiologically non-significant, whilst 70% uniform concentric stenoses about 10 mm long straddled the ischaemic threshold (FFR 0.80). A low microvascular resistance (MVR) reduced FFR on average by 0.05, and a high MVR increased it by 0.03. Conclusion: Using computational modelling, we have produced an analysis of vFFR that relates stenosis characteristics to haemodynamic significance. The strongest predictor of a positive vFFR was a concentric, ≥80% diameter stenosis. The importance of MVR was quantified. Other lesion characteristics have a limited impact.

10.
Heart ; 107(10): 783-789, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419878

RESUMO

The role of 'stand-alone' coronary angiography (CAG) in the management of patients with chronic coronary syndromes is the subject of debate, with arguments for its replacement with CT angiography on the one hand and its confinement to the interventional cardiac catheter laboratory on the other. Nevertheless, it remains the standard of care in most centres. Recently, computational methods have been developed in which the laws of fluid dynamics can be applied to angiographic images to yield 'virtual' (computed) measures of blood flow, such as fractional flow reserve. Together with the CAG itself, this technology can provide an 'all-in-one' anatomical and functional investigation, which is particularly useful in the case of borderline lesions. It can add to the diagnostic value of CAG by providing increased precision and reduce the need for further non-invasive and functional tests of ischaemia, at minimal cost. In this paper, we place this technology in context, with emphasis on its potential to become established in the diagnostic workup of patients with suspected coronary artery disease, particularly in the non-interventional setting. We discuss the derivation and reliability of angiographically derived fractional flow reserve (CAG-FFR) as well as its limitations and how CAG-FFR could be integrated within existing national guidance. The assessment of coronary physiology may no longer be the preserve of the interventional cardiologist.


Assuntos
Angiografia por Tomografia Computadorizada , Doença das Coronárias/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Tomada de Decisão Clínica , Ponte de Artéria Coronária , Doença das Coronárias/cirurgia , Humanos
11.
Front Cardiovasc Med ; 8: 735008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746253

RESUMO

The current management of acute coronary syndromes (ACS) is with an invasive strategy to guide treatment. However, identifying the lesions which are physiologically significant can be challenging. Non-invasive imaging is generally not appropriate or timely in the acute setting, so the decision is generally based upon visual assessment of the angiogram, supplemented in a small minority by invasive pressure wire studies using fractional flow reserve (FFR) or related indices. Whilst pressure wire usage is slowly increasing, it is not feasible in many vessels, patients and situations. Limited evidence for the use of FFR in non-ST elevation (NSTE) ACS suggests a 25% change in management, compared with traditional assessment, with a shift from more to less extensive revascularisation. Virtual (computed) FFR (vFFR), which uses a 3D model of the coronary arteries constructed from the invasive angiogram, and application of the physical laws of fluid flow, has the potential to be used more widely in this situation. It is less invasive, fast and can be integrated into catheter laboratory software. For severe lesions, or mild disease, it is probably not required, but it could improve the management of moderate disease in 'real time' for patients with non-ST elevation acute coronary syndromes (NSTE-ACS), and in bystander disease in ST elevation myocardial infarction. Its practicability and impact in the acute setting need to be tested, but the underpinning science and potential benefits for rapid and streamlined decision-making are enticing.

12.
Cardiovasc Res ; 117(6): 1567-1577, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32666101

RESUMO

AIMS: Ischaemic heart disease is the reduction of myocardial blood flow, caused by epicardial and/or microvascular disease. Both are common and prognostically important conditions, with distinct guideline-indicated management. Fractional flow reserve (FFR) is the current gold-standard assessment of epicardial coronary disease but is only a surrogate of flow and only predicts percentage flow changes. It cannot assess absolute (volumetric) flow or microvascular disease. The aim of this study was to develop and validate a novel method that predicts absolute coronary blood flow and microvascular resistance (MVR) in the catheter laboratory. METHODS AND RESULTS: A computational fluid dynamics (CFD) model was used to predict absolute coronary flow (QCFD) and coronary MVR using data from routine invasive angiography and pressure-wire assessment. QCFD was validated in an in vitro flow circuit which incorporated patient-specific, three-dimensional printed coronary arteries; and then in vivo, in patients with coronary disease. In vitro, QCFD agreed closely with the experimental flow over all flow rates [bias +2.08 mL/min; 95% confidence interval (error range) -4.7 to +8.8 mL/min; R2 = 0.999, P < 0.001; variability coefficient <1%]. In vivo, QCFD and MVR were successfully computed in all 40 patients under baseline and hyperaemic conditions, from which coronary flow reserve (CFR) was also calculated. QCFD-derived CFR correlated closely with pressure-derived CFR (R2 = 0.92, P < 0.001). This novel method was significantly more accurate than Doppler-wire-derived flow both in vitro (±6.7 vs. ±34 mL/min) and in vivo (±0.9 vs. ±24.4 mmHg). CONCLUSIONS: Absolute coronary flow and MVR can be determined alongside FFR, in absolute units, during routine catheter laboratory assessment, without the need for additional catheters, wires or drug infusions. Using this novel method, epicardial and microvascular disease can be discriminated and quantified. This comprehensive coronary physiological assessment may enable a new level of patient stratification and management.


Assuntos
Cateterismo Cardíaco , Angiografia Coronária , Reserva Fracionada de Fluxo Miocárdico , Microcirculação , Modelos Cardiovasculares , Isquemia Miocárdica/diagnóstico , Modelagem Computacional Específica para o Paciente , Resistência Vascular , Idoso , Velocidade do Fluxo Sanguíneo , Tomada de Decisão Clínica , Feminino , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Valor Preditivo dos Testes , Impressão Tridimensional , Prognóstico , Reprodutibilidade dos Testes
13.
Eur Heart J Digit Health ; 2(2): 263-270, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34223175

RESUMO

AIMS: To extend the benefits of physiologically guided percutaneous coronary intervention to many more patients, angiography-derived, or 'virtual' fractional flow reserve (vFFR) has been developed, in which FFR is computed, based upon the images, instead of being measured invasively. The effect of operator experience with these methods upon vFFR accuracy remains unknown. We investigated variability in vFFR results based upon operator experience with image-based computational modelling techniques. METHODS AND RESULTS: Virtual fractional flow reserve was computed using a proprietary method (VIRTUheart) from the invasive angiograms of patients with coronary artery disease. Each case was processed by an expert (>100 vFFR cases) and a non-expert (<20 vFFR cases) operator and results were compared. The primary outcome was the variability in vFFR between experts and non-experts and the impact this had upon treatment strategy (PCI vs. conservative management). Two hundred and thirty-one vessels (199 patients) were processed. Mean non-expert and expert vFFRs were similar overall [0.76 (0.13) and 0.77 (0.16)] but there was significant variability between individual results (variability coefficient 12%, intraclass correlation coefficient 0.58), with only moderate agreement (κ = 0.46), and this led to a statistically significant change in management strategy in 27% of cases. Variability was significantly lower, and agreement higher, for expert operators; a change in their recommended management occurred in 10% of repeated expert measurements and 14% of inter-expert measurements. CONCLUSION: Virtual fractional flow reserve results are influenced by operator experience of vFFR processing. This had implications for treatment allocation. These results highlight the importance of training and quality assurance to ensure reliable, repeatable vFFR results.

14.
Can J Cardiol ; 37(10): 1530-1538, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126226

RESUMO

BACKGROUND: Using fractional flow reserve (FFR) to guide percutaneous coronary intervention for patients with coronary artery disease (CAD) improves clinical decision making but remains underused. Virtual FFR (vFFR), computed from angiographic images, permits physiologic assessment without a pressure wire and can be extended to virtual coronary intervention (VCI) to facilitate treatment planning. This study investigated the effect of adding vFFR and VCI to angiography in patient assessment and management. METHODS: Two cardiologists independently reviewed clinical data and angiograms of 50 patients undergoing invasive management of coronary syndromes, and their management plans were recorded. The vFFRs were computed and disclosed, and the cardiologists submitted revised plans. Then, using VCI, the physiologic results of various interventional strategies were shown and further revision was invited. RESULTS: Disclosure of vFFR led to a change in strategy in 27%. VCI led to a change in stent size in 48%. Disclosure of vFFR and VCI resulted in an increase in operator confidence in their decision. Twelve cases were reviewed by 6 additional cardiologists. There was limited agreement in the management plans between cardiologists based on either angiography (kappa = 0.31) or vFFR (kappa = 0.39). CONCLUSIONS: vFFR has the potential to alter decision making, and VCI can guide stent sizing. However, variability in management strategy remains considerable between operators, even when presented with the same anatomic and physiologic data.


Assuntos
Síndrome Coronariana Aguda/cirurgia , Cateteres Cardíacos , Vasos Coronários/cirurgia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Laboratórios , Intervenção Coronária Percutânea/métodos , Terapia de Exposição à Realidade Virtual/métodos , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Tomada de Decisão Clínica , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Estudos Retrospectivos
15.
Sci Rep ; 11(1): 19694, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608218

RESUMO

Three dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute 'virtual' fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated. Furthermore, the magnitude of vFFR error arising from reconstruction is unkown. We aimed to validate a method for 3D CA reconstruction and determine the effect this had upon the accuracy of vFFR. Clinically realistic coronary phantom models were created comprosing seven standard stenoses in aluminium and 15 patient-based 3D-printed, imaged with CA, three times, according to standard clinical protocols, yielding 66 datasets. Each was reconstructed using epipolar line projection and intersection. All reconstructions were compared against the real phantom models in terms of minimal lumen diameter, centreline and surface similarity. 3D-printed reconstructions (n = 45) and the reference files from which they were printed underwent vFFR computation, and the results were compared. The average error in reconstructing minimum lumen diameter (MLD) was 0.05 (± 0.03 mm) which was < 1% (95% CI 0.13-1.61%) compared with caliper measurement. Overall surface similarity was excellent (Hausdorff distance 0.65 mm). Errors in 3D CA reconstruction accounted for an error in vFFR of ± 0.06 (Bland Altman 95% limits of agreement). Errors arising from the epipolar line projection method used to reconstruct 3D coronary anatomy from CA are small but contribute to clinically relevant errors when used to compute vFFR.


Assuntos
Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Imageamento Tridimensional , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes
16.
J Cardiol ; 73(6): 544-552, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30709715

RESUMO

BACKGROUND: Non-invasive estimation of the pressure gradient in aortic coarctation has much clinical importance in assisting the diagnosis and treatment of the disease. Previous researchers applied computational fluid dynamics for the prediction of the pressure gradient in aortic coarctation. The accuracy of the prediction was satisfactory but the procedure was time-consuming and resource-demanding. METHOD: In this research a magnetic resonance imaging (MRI)-based non-invasive modeling procedure is implemented to predict the pressure gradient in 14 patient cases of aortic coarctation. Multi-cycle patient flow and pressure data are processed to produce the flow and pressure conditions in the patient cases. Bernoulli equation-based friction loss model combined with the inertial effect of the blood flow in the vessel segments are applied to model the pressure gradient in the aortic coarctation. The model-predicted pressure gradient data are then compared with the catheter in vivo measurement data for validation. RESULTS: The MRI-based model prediction technique produces results that are consistent with those from the catheter measurement, based on the criteria of both the cycle-averaged instantaneous pressure gradient and the peak-to-peak pressure gradient. CONCLUSION: This study suggests that the MRI-based non-invasive modeling procedure has much potential to be applied in clinical practice for the prediction of the pressure gradient in aortic coarctation patients.


Assuntos
Coartação Aórtica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Modelagem Computacional Específica para o Paciente , Estatística como Assunto/métodos , Adulto , Catéteres , Feminino , Hemodinâmica , Humanos , Hidrodinâmica , Masculino
17.
Med Eng Phys ; 72: 38-48, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554575

RESUMO

The aim of this position paper is to provide a brief overview of the current status of cardiovascular modelling and of the processes required and some of the challenges to be addressed to see wider exploitation in both personal health management and clinical practice. In most branches of engineering the concept of the digital twin, informed by extensive and continuous monitoring and coupled with robust data assimilation and simulation techniques, is gaining traction: the Gartner Group listed it as one of the top ten digital trends in 2018. The cardiovascular modelling community is starting to develop a much more systematic approach to the combination of physics, mathematics, control theory, artificial intelligence, machine learning, computer science and advanced engineering methodology, as well as working more closely with the clinical community to better understand and exploit physiological measurements, and indeed to develop jointly better measurement protocols informed by model-based understanding. Developments in physiological modelling, model personalisation, model outcome uncertainty, and the role of models in clinical decision support are addressed and 'where-next' steps and challenges discussed.


Assuntos
Modelos Cardiovasculares , Medicina de Precisão/métodos , Reserva Fracionada de Fluxo Miocárdico , Humanos , Incerteza
18.
EuroIntervention ; 15(8): 707-713, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30561366

RESUMO

AIMS: Fractional flow reserve (FFR) represents the percentage reduction in coronary flow relative to a hypothetically normal artery; however, percutaneous coronary intervention (PCI) seldom achieves physiological normality (FFR 1.00), particularly in the context of diffuse disease. In this study we describe a method for calculating the vessel-specific maximal achievable FFR (FFRmax) providing a personalised assessment of what PCI can achieve. METHODS AND RESULTS: FFR measurements were obtained from 71 patients (100 arteries) undergoing angiography. Three-dimensional (3D) coronary anatomy was reconstructed from angiographic images. An ideal intervention, in which all stenoses are removed, was modelled, and the FFRmax calculated. The "personalised" FFR (FFRpers) was calculated as measured FFR/FFRmax. PCI was performed in 52 vessels and post-PCI FFR measured in 50. FFRmax was compared to post-PCI measured FFRs. The mean FFRmax was 0.92 (±0.04). This was on average 0.04 (±0.05) higher than the corresponding post-PCI measured FFR (p<0.001). FFRpers was significantly higher (0.06±0.04) than measured FFR (p<0.001), indicating that FFR overestimates flow restoration achievable with PCI. CONCLUSIONS: A patient's maximal achievable FFR can now be determined prior to PCI. This approach provides a more realistic assessment of the physiological benefit of PCI than is implied by baseline FFR and may prevent unnecessary intervention.


Assuntos
Reserva Fracionada de Fluxo Miocárdico , Revascularização Miocárdica , Intervenção Coronária Percutânea , Angiografia Coronária , Doença da Artéria Coronariana , Humanos , Resultado do Tratamento
19.
JACC Cardiovasc Imaging ; 12(5): 865-872, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550308

RESUMO

OBJECTIVES: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. BACKGROUND: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. METHODS: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. RESULTS: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. CONCLUSIONS: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Intervenção Coronária Percutânea , Idoso , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/instrumentação , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Estudos Prospectivos , Reprodutibilidade dos Testes , Stents , Resultado do Tratamento
20.
Biomed Eng Online ; 7: 8, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18279514

RESUMO

BACKGROUND: It is widely accepted that venous valves play an important role in reducing the pressure applied to the veins under dynamic load conditions, such as the act of standing up. This understanding is, however, qualitative and not quantitative. The purpose of this paper is to quantify the pressure shielding effect and its variation with a number of system parameters. METHODS: A one-dimensional mathematical model of a collapsible tube, with the facility to introduce valves at any position, was used. The model has been exercised to compute transient pressure and flow distributions along the vein under the action of an imposed gravity field (standing up). RESULTS: A quantitative evaluation of the effect of a valve, or valves, on the shielding of the vein from peak transient pressure effects was undertaken. The model used reported that a valve decreased the dynamic pressures applied to a vein when gravity is applied by a considerable amount. CONCLUSION: The model has the potential to increase understanding of dynamic physical effects in venous physiology, and ultimately might be used as part of an interventional planning tool.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Gravitação , Modelos Cardiovasculares , Veias/fisiologia , Simulação por Computador , Elasticidade , Humanos , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa