Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38901-38909, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534572

RESUMO

Nanoparticle-on-mirror systems are a stable, robust, and reproducible method of squeezing light into sub-nanometer volumes. Graphene is a particularly interesting material to use as a spacer in such systems as it is the thinnest possible 2D material and can be doped both chemically and electrically to modulate the plasmonic modes. We investigate a simple nanoparticle-on-mirror system, consisting of a Au nanosphere on top of an Au mirror, separated by a monolayer of graphene. With this system, we demonstrate, with both experiments and numerical simulations, how the doping of the graphene and the control of the gap size can be controlled to tune the plasmonic response of the coupled nanosphere using nitric acid. The coupling of the Au nanosphere and Au thin film reveals multipolar modes which can be tuned by adjusting the gap size or doping an intermediate graphene monolayer. At high doping levels, the interaction between the charge-transfer plasmon and gap plasmon leads to splitting of the plasmon energies. The study provides evidence for the unification of theories proposed by previous works investigating similar systems.

2.
ACS Appl Mater Interfaces ; 12(41): 46406-46415, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32960560

RESUMO

Rabi splitting between the longitudinal plasmon of a gold nano-bipyramid and the A exciton of monolayer MoS2 is observed at room temperature. The dependence of the Rabi splitting on the physical dimensions of the nano-bipyramid is reported. The impact of bipyramid length, aspect ratio, and tip radius on the coupling strength is investigated. The mode volume of the nanoresonator is significantly reduced because of the sharp tips of the bipyramid, and the Rabi splitting increases with tip sharpness. The results also reveal that greater Rabi splitting is observed for larger bipyramids, contrasting with results previously reported for different nanoresonator shapes. This shows, for the first time, how the magnitude of the splitting has a different response for particular nanoresonators when tuning the size, without increasing the number of excitons coupled into the system. The Rabi splitting, at zero energy detuning between plasmon and A exciton, increases from ∼55 meV with a 70 nm-long bipyramid to ∼80 meV with a 100 nm-long bipyramid. The increase in coupling strength with size arises because of increasing confinement of the field enhancement at the bipyramid tip.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa