Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 242(1): 259-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912190

RESUMO

MAIN CONCLUSION: Distribution of Conyza species is well correlated with human interference. Multiple herbicide resistance is caused by the attempt to overcome resistance to one mode of action by overuse of another. Conyza canadensis (CC) and Conyza bonariensis (CB) are troublesome weeds around the world. Extensive use of herbicides has led to the evolution of numerous Conyza spp. herbicide-resistant populations. Seeds of 91 CC and CB populations were collected across Israel. They were mostly found (86 %) in roadsides and urban habitats, two disturbed habitats that had been dramatically impacted by human activities, thus we classify these species as anthropogenic. Although pyrithiobac-sodium was only used in cotton fields, 90 % of Conyza spp. populations were identified as pyrithiobac-sodium resistant, suggesting possible natural resistance to pyrithiobac-sodium. CC21 and CC17 C. canadensis populations were highly resistant to all tested ALS inhibitors due to a substitution in the ALS gene from Trp574 to Leu. They were also atrazine resistant due to a substitution in the psbA gene from Ser264 to Gly. The high level of imazapyr and pyrithiobac-sodium resistance observed in the CC10 population was due to an Ala205 to Val substitution. However, high resistance to sulfometuron methyl and pyrithiobac-sodium in population CC6 was due to a point mutation at Pro197 to Ser. All resistant plants of CC21 population showed both psbA (Ser264 to Gly) and ALS (Trp574 to Leu) substitutions, leading us to the conclusion that the attempt to overcome resistance to one mode of action by overuse of another will most likely lead to multiple herbicide resistance. Furthermore, we concluded that only individuals that carry both mutations could survive the shift between the two modes of action and overcome the fitness cost associated with the PSII resistance.


Assuntos
Evolução Biológica , Conyza/fisiologia , Resistência a Herbicidas , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Sequência de Aminoácidos , Atrazina/farmacologia , Conyza/efeitos dos fármacos , Ecossistema , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa