RESUMO
BACKGROUND & AIMS: Sirtuin 5, encoded by the SIRT5 gene, is a NAD+-dependent deacylase that modulates mitochondrial metabolic processes through post-translational modifications. In this study, we aimed to examine the impact of the SIRT5 rs12216101 T>G non-coding single nucleotide polymorphism on disease severity in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: The rs12216101 variant was genotyped in 2,606 consecutive European patients with biopsy-proven NAFLD. Transcriptomic analysis, expression of mitochondrial complexes and oxidative stress levels were measured in liver samples from a subset of bariatric patients. Effects of SIRT5 pharmacological inhibition were evaluated in HepG2 cells exposed to excess free fatty acids. Mitochondrial energetics in vitro were investigated by high-performance liquid chromatography. RESULTS: In the whole cohort, the frequency distribution of SIRT5 rs12216101 TT, TG and GG genotypes was 47.0%, 42.3% and 10.7%, respectively. At multivariate logistic regression analysis adjusted for sex, age >50 years, diabetes, and PNPLA3 rs738409 status, the SIRT5 rs12216101 T>G variant was associated with the presence of non-alcoholic steatohepatitis (odds ratio 1.20, 95% CI 1.03-1.40) and F2-F4 fibrosis (odds ratio 1.18; 95% CI 1.00-1.37). Transcriptomic analysis showed that the SIRT5 rs12216101 T>G variant was associated with upregulation of transcripts involved in mitochondrial metabolic pathways, including the oxidative phosphorylation system. In patients carrying the G allele, western blot analysis confirmed an upregulation of oxidative phosphorylation complexes III, IV, V and consistently higher levels of reactive oxygen species, reactive nitrogen species and malondialdehyde, and lower ATP levels. Administration of a pharmacological SIRT5 inhibitor preserved mitochondrial energetic homeostasis in HepG2 cells, as evidenced by restored ATP/ADP, NAD+/NADH, NADP+/NADPH ratios and glutathione levels. CONCLUSIONS: The SIRT5 rs12216101 T>G variant, heightening SIRT5 activity, is associated with liver damage, mitochondrial dysfunction, and oxidative stress in patients with NAFLD. IMPACT AND IMPLICATIONS: In this study we discovered that the SIRT5 rs12216101 T>G variant is associated with higher disease severity in patients with non-alcoholic fatty liver disease (NAFLD). This risk variant leads to a SIRT5 gain-of-function, enhancing mitochondrial oxidative phosphorylation and thus leading to oxidative stress. SIRT5 may represent a novel disease modulator in NAFLD.
Assuntos
Doenças Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Genótipo , Polimorfismo de Nucleotídeo Único , Fígado , Doenças Mitocondriais/complicações , Trifosfato de Adenosina , Predisposição Genética para Doença , Sirtuínas/genéticaRESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Tióctico , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Endorribonucleases/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Hepatócitos/patologia , Senescência Celular , Inflamação/patologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Fígado/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismoRESUMO
In a previous study, we showed that various low-molecular-weight compounds in follicular fluid (FF) samples of control fertile females (CFF) have different concentrations compared to those found in FF of infertile females (IF), before and after their categorization into different subgroups, according to their clinical diagnosis of infertility. Using the same FF samples of this previous study, we here analyzed the FF concentrations of free and bound bilirubin and compared the results obtained in CFF, IF and the different subgroups of IF (endometriosis, EM, polycystic ovary syndrome, PCOS, age-related reduced ovarian reserve, AR-ROR, reduced ovarian reserve, ROR, genetic infertility, GI and unexplained infertility, UI). The results clearly indicated that CFF had lower values of free, bound and total bilirubin compared to the respective values measured in pooled IF. These differences were observed even when IF were categorized into EM, PCOS, AR-ROR, ROR, GI and UI, with EM and PCOS showing the highest values of free, bound and total bilirubin among the six subgroups. Using previous results of ascorbic acid, GSH and nitrite + nitrate measured in the same FF samples of the same FF donors, we found that total bilirubin in FF increased as a function of decreased values of ascorbic acid and GSH, and increased concentrations of nitrite + nitrate. The values of total bilirubin negatively correlated with the clinical parameters of fertilization procedures (number of retrieved oocytes, mature oocytes, fertilized oocytes, blastocysts, high-quality blastocysts) and with clinical pregnancies and birth rates. Bilirubin concentrations in FF were not linked to those found in serum samples of FF donors, thereby strongly suggesting that its over production was due to higher activity of heme oxygenase-1 (HO-1), the key enzyme responsible for bilirubin formation, in granulosa cells, or cumulus cells or oocytes of IF and ultimately leading to bilirubin accumulation in FF. Since increased activity of HO-1 is one of the main enzymatic intracellular mechanisms of defense towards external insults (oxidative/nitrosative stress, inflammation), and since we found correlations among bilirubin and oxidative/nitrosative stress in these FF samples, it may reasonably be supposed that bilirubin increase in FF of IF is the result of protracted exposures to the aforementioned insults evidently playing relevant roles in female infertility.
Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Infertilidade Feminina/metabolismo , Líquido Folicular/metabolismo , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Síndrome do Ovário Policístico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Fertilização in vitro , Oócitos/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Bilirrubina/metabolismo , Ácido Ascórbico/metabolismoRESUMO
Notwithstanding the great improvement of ART, the overall rate of successful pregnancies from implanted human embryos is definitely low. The current routine embryo quality assessment is performed only through morphological criteria, which has poor predictive capacity since only a minor percentage of those in the highest class give rise to successful pregnancy. Previous studies highlighted the potentiality of the analysis of metabolites in human embryo culture media, useful for the selection of embryos for implantation. In the present study, we analyzed in blind 66 human embryo culture media at 5 days after in vitro fertilization with the aim of quantifying compounds released by cell metabolism that were not present as normal constituents of the human embryo growth media, including purines, pyrimidines, nitrite, and nitrate. Only some purines were detectable (hypoxanthine and uric acid) in the majority of samples, while nitrite and nitrate were always detectable. When matching biochemical results with morphological evaluation, it was found that low grade embryos (n = 12) had significantly higher levels of all the compounds of interest. Moreover, when matching biochemical results according to successful (n = 17) or unsuccessful (n = 25) pregnancy, it was found that human embryos from the latter group released higher concentrations of hypoxanthine, uric acid, nitrite, and nitrate in the culture media. Additionally, those embryos that developed into successful pregnancies were all associated with the birth of healthy newborns. These results, although carried out on a relatively low number of samples, indicate that the analysis of the aforementioned compounds in the culture media of human embryos is a potentially useful tool for the selection of embryos for implantation, possibly leading to an increase in the overall rate of ART.
Assuntos
Transferência Embrionária , Óxido Nítrico , Recém-Nascido , Gravidez , Feminino , Humanos , Meios de Cultura/metabolismo , Nitratos , Nitritos , Ácido Úrico , Implantação do Embrião , Fertilização in vitro , Metabolismo Energético , Hipoxantinas , Técnicas de Cultura Embrionária , Taxa de GravidezRESUMO
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids within hepatocytes, which compromises liver functionality following mitochondrial dysfunction and increased production of reactive oxygen species (ROS). Lipoic acid is one of the prosthetic groups of the pyruvate dehydrogenase complex also known for its ability to confer protection from oxidative damage because of its antioxidant properties. In this study, we aimed to investigate the effects of lipoic acid on lipotoxicity and mitochondrial dynamics in an in vitro model of liver steatosis. HepG2 cells were treated with palmitic acid and oleic acid (1:2) to induce steatosis, without and with 1 and 5 µM lipoic acid. Following treatments, cell proliferation and lipid droplets accumulation were evaluated. Mitochondrial functions were assessed through the evaluation of membrane potential, MitoTracker Red staining, expression of genes of the mitochondrial quality control, and analysis of energy metabolism by HPLC and Seahorse. We showed that lipoic acid treatment restored membrane potential to values comparable to control cells, as well as protected cells from mitochondrial fragmentation following PA:OA treatment. Furthermore, our data showed that lipoic acid was able to determine an increase in the expression of mitochondrial fusion genes and a decrease in mitochondrial fission genes, as well as to restore the bioenergetics of cells after treatment with palmitic acid and oleic acid. In conclusion, our data suggest that lipoic acid reduces lipotoxicity and improves mitochondrial functions in an in vitro model of steatosis, thus providing a potentially valuable pharmacological tool for NAFLD treatment.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Tióctico , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Estresse Oxidativo , Metabolismo Energético , Fígado/metabolismoRESUMO
In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.
Assuntos
Lesões Encefálicas Traumáticas , Sulfatos , Aminoácidos/metabolismo , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Sulfato de Dextrana , Ácido Glutâmico , Homeostase , Peso Molecular , RatosRESUMO
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (ß-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Assuntos
Carnosina , Síndromes Neurotóxicas , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antídotos/farmacologia , Antioxidantes/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Carnosina/metabolismo , Carnosina/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Estresse OxidativoRESUMO
Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.
Assuntos
Microglia/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Células A549 , Animais , Carbono/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Camundongos , Microglia/citologia , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosfatidilgliceróis/química , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/química , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Subcrônica/métodosRESUMO
Nearly 40-50% of infertility problems are estimated to be of female origin. Previous studies dedicated to the analysis of metabolites in follicular fluid (FF) produced contrasting results, although some valuable indexes capable to discriminate control groups (CTRL) from infertile females (IF) and correlate with outcome measures of assisted reproduction techniques were in some instances found. In this study, we analyzed in blind FF of 35 control subjects (CTRL = patients in which inability to obtain pregnancy was exclusively due to a male factor) and 145 IF (affected by: endometriosis, n = 19; polycystic ovary syndrome, n = 14; age-related reduced ovarian reserve, n = 58; reduced ovarian reserve, n = 29; unexplained infertility, n = 14; genetic infertility, n = 11) to determine concentrations of 55 water- and fat-soluble low molecular weight compounds (antioxidants, oxidative/nitrosative stress-related compounds, purines, pyrimidines, energy-related metabolites, and amino acids). Results evidenced that 27/55 of them had significantly different values in IF with respect to those measured in CTRL. The metabolic pattern of these potential biomarkers of infertility was cumulated (in both CTRL and IF) into a Biomarker Score index (incorporating the metabolic anomalies of FF), that fully discriminated CTRL (mean Biomarker Score value = 4.00 ± 2.30) from IF (mean Biomarker Score value = 14.88 ± 3.09, p < 0.001). The Biomarker Score values were significantly higher than those of CTRL in each of the six subgroups of IF. Posterior probability curves and ROC curve indicated that values of the Biomarker Score clustered CTRL and IF into two distinct groups, based on the individual FF metabolic profile. Furthermore, Biomarker Score values correlated with outcome measures of ovarian stimulation, in vitro fertilization, number and quality of blastocysts, clinical pregnancy, and healthy offspring. These results strongly suggest that the biochemical quality of FF deeply influences not only the effectiveness of IVF procedures but also the following embryonic development up to healthy newborns. The targeted metabolomic analysis of FF (using empowered Redox Energy Test) and the subsequent calculation of the Biomarker Score evidenced a set of 27 low molecular weight infertility biomarkers potentially useful in the laboratory managing of female infertility and to predict the success of assisted reproduction techniques.
Assuntos
Biomarcadores/análise , Fertilização in vitro , Líquido Folicular/metabolismo , Infertilidade Feminina/metabolismo , Metaboloma , Estresse Oxidativo , Adulto , Aminoácidos/análise , Antioxidantes/análise , Feminino , Humanos , Infertilidade Feminina/terapia , Itália , Pessoa de Meia-Idade , Estresse Nitrosativo , Indução da Ovulação , Purinas/análise , Pirimidinas/análise , Resultado do TratamentoRESUMO
Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-ß1 (TGF-ß1) and the down-regulation of the expressions of interleukins 1ß and 6 (IL-1ß and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).
Assuntos
Carnosina/farmacologia , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Oxidantes/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/metabolismo , Citocinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Imunomodulação/genética , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7RESUMO
Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 µM NMDA, followed by incubations (24, 48, and 72 h) without (controls) and with F-1,6-P2 (0.5, 1 or 1.5 mM). At each time, cell necrosis was determined by measuring LDH in the medium. Energy metabolism was evaluated by measuring ATP, GTP, ADP, AMP, and ATP catabolites (nucleosides and oxypurines) in deproteinized OHSC extracts. Gene expressions of phosphofructokinase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase were also measured. F-1,6-P2 dose-dependently decreased NMDA excitotoxicity, abolishing cell necrosis at the highest concentration tested (1.5 mM). Additionally, F-1,6-P2 attenuated cell energy imbalance caused by NMDA, ameliorating the mitochondrial phosphorylating capacity (increase in ATP/ADP ratio) Metabolism normalization occurred when using 1.5 mM F-1,6-P2. Remarkable increase in expressions of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase (up to 25 times over the values of controls) was also observed. Since this phenomenon was recorded even in OHSC treated with F-1,6-P2 with no prior challenge with NMDA, it is highly conceivable that F-1,6-P2 can enter into intact cerebral cells producing significant benefits on energy metabolism. These effects are possibly mediated by changes occurring at the gene level, thus opening new perspectives for F-1,6-P2 application as a useful adjuvant to rescue mitochondrial metabolism of cerebral cells under stressing conditions.
Assuntos
Frutose-Bifosfatase/farmacologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Animais , Metabolismo Energético , Frutose-Bifosfato Aldolase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Necrose , Fosfofrutoquinases/metabolismo , Nucleosídeos de Purina/metabolismo , Ratos , Ratos WistarRESUMO
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance.
Assuntos
Lesões Encefálicas Traumáticas/patologia , Ciclo do Ácido Cítrico/genética , Complexo Piruvato Desidrogenase/metabolismo , Acetilcoenzima A/análise , Animais , Lesões Encefálicas Traumáticas/metabolismo , Cromatografia Líquida de Alta Pressão , Coenzima A/análise , Regulação para Baixo , Metabolismo Energético , Masculino , Mitocôndrias/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo Piruvato Desidrogenase/genética , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Regulação para CimaRESUMO
STUDY QUESTION: Is the determination of antioxidants, oxidative/nitrosative stress-related compounds, purines, pyrimidines and energy-related metabolites in human seminal plasma of utility to evidence biomarkers related to male infertility? SUMMARY ANSWER: The determination of 26 metabolites in seminal plasma allowed to evidence that 21/26 of them are biomarkers of male infertility, as well as to calculate a cumulative index, named Biomarker Score, that fully discriminates fertile controls from infertile patients and partially differentiates infertile without from infertile with spermiogram anomalies. WHAT IS KNOWN ALREADY: Epidemiological studies indicated that a male factor is involved in ~50% of cases of pregnancy failure, with a significant percentage of infertile males having no alterations in the spermiogram. Further laboratory analyses of male infertility are mainly dedicated only to gross evaluations of oxidative stress or total antioxidant capacity. STUDY DESIGN, SIZE, DURATION: Seminal plasma of 48 fertile controls and 96 infertile patients (master group), were collected from September 2016 to February 2018. A second group of 44 infertile patients (validation group) was recruited in a second, independent centre from September 2017 to March 2018. Samples were analysed in blind using a 'Redox Energy Test' to determine various low-molecular weight compounds, with the aim of finding metabolic profiles and biomarkers related to male infertility. PARTICIPANTS/MATERIALS, SETTING, METHODS: In all seminal plasma, 26 water- and fat-soluble compounds (related to antioxidant defences, oxidative/nitrosative stress, purine, pyrimidine and energy metabolism) were analysed using high-performance liquid chromatographic methods. According to spermiogram, infertile patients of both groups were also categorized into normozoospermic (N, no anomalies in the spermiogram), or into the subgroup including all patients with anomalies in the spermiogram (asthenoteratooligozoospermic ATO + asthenozoospermic A + teratozoospermic T + oligozoospermic O). MAIN RESULTS AND THE ROLE OF CHANCE: In the master group, results indicated that 21/26 compounds assayed in seminal plasma of infertile males were significantly different from corresponding values determined in fertile controls. These 21 compounds constituted the male infertility biomarkers. Similar results were recorded in patients of the validation group. Using an index cumulating the biochemical seminal plasma anomalies (Biomarker Score), we found that fertile controls had mean Biomarker Score values of 2.01 ± 1.42, whilst infertile patients of the master and of the validation group had mean values of 12.27 ± 3.15 and of 11.41 ± 4.09, respectively (P < 0.001 compared to controls). The lack of statistical differences between the master and the validation groups, in both the metabolic profiles and the Biomarker Score values, allowed to pool patients into a single cohort of infertile males. The Biomarker Score values showed that fertile controls and infertile males clustered into two distinct groups. Infertile patients without (N, n = 42) or with (ATO + A + T + O, n = 98) spermiogram anomalies differed in some biomarkers (ascorbic acid, all-trans retinol, α-tocopherol, cytidine, uridine, guanine). These differences were reinforced by distribution frequencies and posterior probability curves of the Biomarker Score in the three groups. LIMITATIONS, REASONS FOR CAUTION: Results were obtained in relatively limited number of human seminal plasma samples. Using the 'Redox Energy Test' it was possible to associate specific metabolic profiles and values of the Biomarker Score to fertile controls or infertile males. However, it was not possible to evaluate whether the different anomalies of the spermiogram are associated with specific metabolic profiles and values of the Biomarker Score. WIDER IMPLICATIONS OF THE FINDINGS: The 'Redox Energy Test', coupled with the Biomarker Score that cumulates the biochemical characteristics of seminal plasma into a single index, evidenced a set of low-molecular weight biomarkers potentially useful in the laboratory management of male infertility. STUDY FUNDING/COMPETING INTEREST(S): The study was partly funded with research grants from the University of Catania. None of the authors have any conflicting interests to declare.
Assuntos
Antioxidantes/metabolismo , Astenozoospermia/sangue , Astenozoospermia/metabolismo , Oligospermia/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Adulto , Antioxidantes/análise , Biomarcadores/metabolismo , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Peso Molecular , Estresse Nitrosativo , Estresse Oxidativo , Contagem de Espermatozoides , Motilidade dos EspermatozoidesRESUMO
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by ß-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer's disease, alone or co-deposited with ß-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal "cross-talk". We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17â»29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17â»29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17â»29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17â»29 (20 µM). We found a complete inhibition of hA17â»29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Assuntos
Cristalinas/metabolismo , Células Endoteliais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amiloide/toxicidade , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Fluorescência , Humanos , Agregados Proteicos , Ratos , Fatores de TempoRESUMO
In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ-aminobutyrate (GABA), tyrosine (Tyr), S-adenosylhomocysteine (SAH), l-cystathionine (l-Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N-acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham-operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long-lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l-Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu-Gln/GABA cycle between neurons and astrocytes, and of the methyl-cycle (demonstrated by decrease in Met, and increase in SAH and l-Cystat), throughout the post-injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.
Assuntos
Aminoácidos/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas Traumáticas/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos WistarRESUMO
In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise , Proteínas do Tecido Nervoso/biossíntese , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Glucose/genética , Masculino , Proteínas do Tecido Nervoso/genética , Ratos , Ratos WistarRESUMO
Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic ß-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 ß-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.
Assuntos
Amiloide/toxicidade , Cobre/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Fator de Crescimento Neural/genéticaRESUMO
Excess nitric oxide (NO) production occurs in several pathological states, including neurodegeneration, ischemia, and inflammation, and is generally accompanied by increased oxidative/nitrosative stress. Carnosine [ß-alanine-histidine (ß-Ala-His)] has been reported to decrease oxidative/nitrosative stress-associated cell damage by reducing the amount of NO produced. In this study, we evaluated the effect of carnosine on NO production by murine RAW 264.7 macrophages stimulated with lipopolysaccharides + interferon-γ. Intracellular NO and intracellular and extracellular nitrite were measured by microchip electrophoresis with laser-induced fluorescence and by the Griess assay, respectively. Results showed that carnosine causes an apparent suppression of total NO production by stimulated macrophages accompanied by an unexpected simultaneous drastic increase in its intracellular low toxicity endproduct, nitrite, with no inhibition of inducible nitric oxide synthase (iNOS). ESI-MS and NMR spectroscopy in a cell-free system showed the formation of multiple adducts (at different ratios) of carnosine-NO and carnosine-nitrite, involving both constituent amino acids (ß-Ala and His) of carnosine, thus providing a possible mechanism for the changes in free NO and nitrite in the presence of carnosine. In stimulated macrophages, the addition of carnosine was also characterized by changes in the expression of macrophage activation markers and a decrease in the release of IL-6, suggesting that carnosine might alter M1/M2 macrophage ratio. These results provide evidence for previously unknown properties of carnosine that modulate the NO/nitrite ratio of stimulated macrophages. This modulation is also accompanied by changes in the release of pro-inflammatory molecules, and does not involve the inhibition of iNOS activity.
Assuntos
Carnosina/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Animais , Interferon gama/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7RESUMO
Multiple sclerosis (MS) is a primary inflammatory demyelinating disease associated with a probably secondary progressive neurodegenerative component. Impaired mitochondrial functioning has been hypothesized to drive neurodegeneration and to cause increased anaerobic metabolism in MS. The aim of our multicentre study was to determine whether MS patients had values of circulating lactate different from those of controls. Patients (n=613) were recruited, assessed for disability and clinically classified (relapsing-remitting, secondary progressive, primary progressive) at the Catholic University of Rome, Italy (n=281), at the MS Centre Amsterdam, The Netherlands (n=158) and at the S. Camillo Forlanini Hospital, Rome, Italy (n=174). Serum lactate levels were quantified spectrophotometrically with the analyst being blinded to all clinical information. In patients with MS serum lactate was three times higher (3.04±1.26mmol/l) than that of healthy controls (1.09±0.25mmol/l, p<0.0001) and increased across clinical groups, with higher levels in cases with a progressive than with a relapsing-remitting disease course. In addition, there was a linear correlation between serum lactate levels and the expanded disability scale (EDSS) (R(2)=0.419; p<0.001). These data support the hypothesis that mitochondrial dysfunction is an important feature in MS and of particular relevance to the neurodegenerative phase of the disease. Measurement of serum lactate in MS might be a relative inexpensive test for longitudinal monitoring of "virtual hypoxia" in MS and also a secondary outcome for treatment trials aimed to improve mitochondrial function in patients with MS.