RESUMO
Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of Staphylococcus aureus and 2 control organisms to understand the genetic basis of genotype-phenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant S. aureus (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCCmec)-orfX junction region that led to a misclassification as methicillin-susceptible S. aureus (MSSA). One strain contained a deletion in spa, which produced a false S. aureus-negative result. A control strain of S. aureus that harbored an SCCmec element but no mecA (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCCM1 insertion. The updated Xpert MRSA/SA BC test successfully detected both spa and SCCmec variants of MRSA and correctly identified empty-cassette strains of S. aureus as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9% contained empty SCCmec cassettes, 1.6% carried SCCM1, <1% had spa deletions, and <1% contained SCCmec variants other than those with SCCM1 These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay.
Assuntos
Proteínas de Bactérias/genética , Hemocultura/métodos , Staphylococcus aureus Resistente à Meticilina/genética , Técnicas de Diagnóstico Molecular/normas , Infecções Estafilocócicas/sangue , Staphylococcus aureus/genética , Antibacterianos/farmacologia , DNA Bacteriano/genética , Reações Falso-Negativas , Variação Genética , Genótipo , Humanos , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Fenótipo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Sequenciamento Completo do GenomaRESUMO
Surveillance of circulating microbial populations is critical for monitoring the performance of a molecular diagnostic test. In this study, we characterized 31 isolates of Streptococcus agalactiae (group B Streptococcus [GBS]) from several geographic locations in the United States and Ireland that contain deletions in or adjacent to the region of the chromosome that encodes the hemolysin gene cfb, the region targeted by the Xpert GBS and GBS LB assays. PCR-negative, culture-positive isolates were recognized during verification studies of the Xpert GBS assay in 12 laboratories between 2012 and 2018. Whole-genome sequencing of 15 GBS isolates from 11 laboratories revealed four unique deletions of chromosomal DNA ranging from 181 bp to 49 kb. Prospective surveillance studies demonstrated that the prevalence of GBS isolates containing deletions in the convenience sample was <1% in three geographic locations but 7% in a fourth location. Among the 15 isolates with chromosomal deletions, multiple pulsed-field gel electrophoresis types were identified, one of which appears to be broadly dispersed across the United States.
Assuntos
Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular/normas , Deleção de Sequência , Streptococcus agalactiae/genética , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Eletroforese em Gel de Campo Pulsado , Proteínas Hemolisinas/genética , Humanos , Irlanda/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Estados Unidos/epidemiologiaRESUMO
Distinct epigenomic profiles of histone marks have been associated with gene expression, but questions regarding the causal relationship remain. Here we investigated the activity of a broad collection of genomically targeted epigenetic regulators that could write epigenetic marks associated with a repressed chromatin state (G9A, SUV39H1, Krüppel-associated box (KRAB), DNMT3A as well as the first targetable versions of Ezh2 and Friend of GATA-1 (FOG1)). dCas9 fusions produced target gene repression over a range of 0- to 10-fold that varied by locus and cell type. dCpf1 fusions were unable to repress gene expression. The most persistent gene repression required the action of several effector domains; however, KRAB-dCas9 did not contribute to persistence in contrast to previous reports. A 'direct tethering' strategy attaching the Ezh2 methyltransferase enzyme to dCas9, as well as a 'recruitment' strategy attaching the N-terminal 45 residues of FOG1 to dCas9 to recruit the endogenous nucleosome remodeling and deacetylase complex, were both successful in targeted deposition of H3K27me3. Surprisingly, however, repression was not correlated with deposition of either H3K9me3 or H3K27me3. Our results suggest that so-called repressive histone modifications are not sufficient for gene repression. The easily programmable dCas9 toolkit allowed precise control of epigenetic information and dissection of the relationship between the epigenome and gene regulation.
Assuntos
Cromatina/química , Endonucleases/genética , Epigenômica/métodos , Inativação Gênica , Histonas/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Endonucleases/metabolismo , Edição de Genes , Células HCT116 , Células HEK293 , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, blaNDM-7 and blaCMY-4 were detected in all Escherichia coli and most Providencia rettgeri isolates; blaNDM-7 was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared blaOXA-1, while blaOXA-10 was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained blaL1, most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.
Assuntos
Carbapenêmicos/farmacologia , Genoma Bacteriano/genética , Bactérias Gram-Negativas/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/genéticaRESUMO
Approximately 15-20% of the S. aureus genome contains mobile genetic elements that can cause discrepancies between phenotypic and genotypic identification methods. Three blood culture bottles (each from a different patient) that showed discordant results, were shown to contain 2 S. aureus isolates after additional subcultures. One bottle had MRSA and MSSA that by DNA sequence analysis differed only by 31â¯kb; however, the deletions encompassed parts of SCCmec including mecA and SCCM1. The second bottle contained MRSA and MSSA that differed by 124â¯kb; the MSSA was missing the entire SCCmec and spa regions. The last bottle contained 2 MRSA, one with ACME II disrupting SCCmec and a 24â¯bp spa deletion. The deletions in SCCmec and the other elements gave rise to the discrepancies between molecular and the original culture results. Such discrepancies should prompt a search for additional strains in the blood culture bottle.
Assuntos
Hemocultura , Sequências Repetitivas Dispersas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Genoma Bacteriano/genética , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Fenótipo , Análise de Sequência de DNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificaçãoRESUMO
OBJECTIVES: Many multidrug-resistant Gram-negative bacilli (MDR-GNB) harbour multiple ß-lactamases. The aim of this study was to assess the impact of multiple ß-lactamase carriage on the accuracy of susceptibility tests and extended-spectrum ß-lactamase (ESBL) and carbapenemase confirmation methods. METHODS: A total of 50 MDR-GNB, of which 29 carried multiple ß-lactamases, underwent broth microdilution (BMD) and disk diffusion (DD) testing as well as confirmation tests for ESBLs and carbapenemases. Whole-genome sequencing (WGS) was used for ß-lactamase gene identification. RESULTS: Categorical agreement of BMD and DD testing results ranged from 86.5 to 97.7% for 10 ß-lactam agents. BMD and DD algorithms for ESBL detection were highly variable; 6 of 8 positive strains carried an ESBL plus a carbapenemase or an AmpC enzyme, which may confound antimicrobial selection. The sensitivity and specificity of the modified carbapenem inactivation method (mCIM) were both 100%, whilst mCIM and EDTA-modified carbapenem inactivation method (eCIM) when used together to differentiate serine from metallo-ß-lactamase carriage were both 96%. Xpert® Carba-R results (in vitro diagnostic test) were consistent with WGS results. Predicting phenotypic carbapenem resistance from WGS data overall showed 100% specificity but only 66.7% sensitivity for Enterobacterales isolates that were non-susceptible to imipenem and meropenem. CONCLUSIONS: Multiple ß-lactamases in MDR-GNB does not impact DD results, the utility of mCIM/eCIM tests, or Xpert Carba-R results. However, ESBL algorithms produced inconsistent results and predicting carbapenem resistance from WGS data was problematic in such strains.