Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 156(1-2): 97-108, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439371

RESUMO

Successful infection depends on the ability of the pathogen to gain nutrients from the host. The extracellular pathogenic bacterium group A Streptococcus (GAS) causes a vast array of human diseases. By using the quorum-sensing sil system as a reporter, we found that, during adherence to host cells, GAS delivers streptolysin toxins, creating endoplasmic reticulum stress. This, in turn, increases asparagine (ASN) synthetase expression and the production of ASN. The released ASN is sensed by the bacteria, altering the expression of ∼17% of GAS genes of which about one-third are dependent on the two-component system TrxSR. The expression of the streptolysin toxins is strongly upregulated, whereas genes linked to proliferation are downregulated in ASN absence. Asparaginase, a widely used chemotherapeutic agent, arrests GAS growth in human blood and blocks GAS proliferation in a mouse model of human bacteremia. These results delineate a pathogenic pathway and propose a therapeutic strategy against GAS infections.


Assuntos
Percepção de Quorum , Infecções Estreptocócicas/microbiologia , Streptococcus/metabolismo , Animais , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Bacteriemia/microbiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Streptococcus/citologia , Streptococcus/patogenicidade , Transcrição Gênica , Fatores de Virulência/genética
2.
Infect Immun ; 92(6): e0008324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38712951

RESUMO

Streptococcus pyogenes [group A streptococcus (GAS)] is a human pathogen capable of infecting diverse tissues. To successfully infect these sites, GAS must detect available nutrients and adapt accordingly. The phosphoenolpyruvate transferase system (PTS) mediates carbohydrate uptake and metabolic gene regulation to adapt to the nutritional environment. Regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several PRD-containing stand-alone regulators with regulons encoding both metabolic genes and virulence factors [PRD-containing virulence regulators (PCVRs)]. One is RofA, which regulates the expression of virulence genes in multiple GAS serotypes. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate virulence gene expression. In this study, the RofA regulon of M1T1 strain 5448 was determined using RNA sequencing. Two operons were consistently differentially expressed across growth in the absence of RofA; the pilus operon was downregulated, and the capsule operon was upregulated. This correlated with increased capsule production and decreased adherence to keratinocytes. Purified RofA-His was phosphorylated in vitro by PTS proteins EI and HPr, and phosphorylated RofA-FLAG was detected in vivo when GAS was grown in low-glucose C medium. Phosphorylated RofA was not observed when C medium was supplemented 10-fold with glucose. Mutations of select histidine residues within the putative PRDs contributed to the in vivo phosphorylation of RofA, although phosphorylation of RofA was still observed, suggesting other phosphorylation sites exist in the protein. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar metabolism with virulence regulation.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes , Fatores de Virulência , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência , Fosforilação , Humanos , Regulon , Óperon , Infecções Estreptocócicas/microbiologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Queratinócitos/microbiologia
3.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33397818

RESUMO

Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Hemoglobinas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Células Sanguíneas/metabolismo , Humanos , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/patogenicidade
4.
Nat Chem Biol ; 15(5): 463-471, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936502

RESUMO

Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to bacterial physiology and infection biology. Here we identify gacH, a gene in the Streptococcus pyogenes group A carbohydrate (GAC) biosynthetic cluster, in two independent transposon library screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme human group IIA-secreted phospholipase A2. Subsequent structural and phylogenetic analysis of the GacH extracellular domain revealed that GacH represents an alternative class of glycerol phosphate transferase. We detected the presence of glycerol phosphate in the GAC, as well as the serotype c carbohydrate from Streptococcus mutans, which depended on the presence of the respective gacH homologs. Finally, nuclear magnetic resonance analysis of GAC confirmed that glycerol phosphate is attached to approximately 25% of the GAC N-acetylglucosamine side-chains at the C6 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen interaction and has implications for vaccine design.


Assuntos
Glicerol/metabolismo , Fosfatos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus/metabolismo , Glicerol/química , Fosfatos/química , Polissacarídeos Bacterianos/química , Streptococcus/química
5.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32719156

RESUMO

Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated ß-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-ß-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the ß-glucoside permease (bglP) and ß-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the ß-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the ß-glucoside salicin; however, only bglP was necessary for growth in other non-ß-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the ß-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.


Assuntos
Álcoois Benzílicos/metabolismo , Glucosídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Infecções dos Tecidos Moles/patologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Repressão Catabólica , Regulação Bacteriana da Expressão Gênica , Hemólise/genética , Humanos , Camundongos , Viabilidade Microbiana/genética , Mutação , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Infecções dos Tecidos Moles/metabolismo , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Açúcares/metabolismo , Virulência/genética
6.
PLoS Pathog ; 14(10): e1007348, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30321240

RESUMO

Human Group IIA secreted phospholipase A2 (hGIIA) is an acute phase protein with bactericidal activity against Gram-positive bacteria. Infection models in hGIIA transgenic mice have suggested the importance of hGIIA as an innate defense mechanism against the human pathogens Group A Streptococcus (GAS) and Group B Streptococcus (GBS). Compared to other Gram-positive bacteria, GAS is remarkably resistant to hGIIA activity. To identify GAS resistance mechanisms, we exposed a highly saturated GAS M1 transposon library to recombinant hGIIA and compared relative mutant abundance with library input through transposon-sequencing (Tn-seq). Based on transposon prevalence in the output library, we identified nine genes, including dltA and lytR, conferring increased hGIIA susceptibility. In addition, seven genes conferred increased hGIIA resistance, which included two genes, gacH and gacI that are located within the Group A Carbohydrate (GAC) gene cluster. Using GAS 5448 wild-type and the isogenic gacI mutant and gacI-complemented strains, we demonstrate that loss of the GAC N-acetylglucosamine (GlcNAc) side chain in the ΔgacI mutant increases hGIIA resistance approximately 10-fold, a phenotype that is conserved across different GAS serotypes. Increased resistance is associated with delayed penetration of hGIIA through the cell wall. Correspondingly, loss of the Lancefield Group B Carbohydrate (GBC) rendered GBS significantly more resistant to hGIIA-mediated killing. This suggests that the streptococcal Lancefield antigens, which are critical determinants for streptococcal physiology and virulence, are required for the bactericidal enzyme hGIIA to exert its bactericidal function.


Assuntos
Antibacterianos/farmacologia , Parede Celular/metabolismo , Fosfolipases A2 do Grupo II/imunologia , Imunidade Inata/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Infecções Estreptocócicas/microbiologia , Streptococcus/imunologia , Atividade Bactericida do Sangue , Fosfolipases A2 do Grupo II/sangue , Fosfolipases A2 do Grupo II/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/enzimologia , Streptococcus/patogenicidade
7.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591169

RESUMO

As a strict human pathogen, Streptococcus pyogenes (group A Streptococcus, or GAS) causes a wide range of infections, from superficial to life-threatening diseases, upon dissemination. Thus, it is necessary to gain a better understanding of how GAS successfully overcomes host-mediated challenges and infects various host niches. We previously identified subcutaneous fitness (scf) genes in the clinically relevant wild-type (WT) GAS M1T1 5448 strain that are critical for fitness during murine soft-tissue infection at both 24 h and 48 h postinfection. The uncharacterized locus scfCDE was transcribed as an operon and is predicted to encode an ABC importer for nutrient uptake (e.g., amino acids). Individual scfCDE deletion mutants grew comparably to WT 5448 in rich medium but exhibited reduced fitness during competitive growth in murine soft tissue and in nutrient-limiting chemically defined medium (CDM). A deletion of the permease gene scfD resulted in a monoculture growth defect in CDM that could be rescued by addition of excess peptides, suggesting a role as an amino acid importer. Interestingly, the ΔscfC substrate-binding and ΔscfD permease mutants, but not the ΔscfE ATPase mutant, were highly attenuated in murine soft tissue. Moreover, all three genes were required for GAS survival in human blood, indicating their impact is not limited to superficial infections. As such, scfCDE plays an integral role in enhancing GAS adaptation during localized infection as well as dissemination to deeper host environments. Since scfCDE is conserved throughout Firmicutes, this work may contribute to the development of therapeutic strategies against GAS and other Gram-positive pathogens.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Camundongos , Infecções Estreptocócicas/genética , Virulência/genética
8.
Mol Microbiol ; 107(3): 416-427, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205552

RESUMO

Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.


Assuntos
Alanina Racemase/genética , Enterococcus faecalis/metabolismo , Transativadores/metabolismo , Alanina Racemase/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Ciclosserina , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Testes de Sensibilidade Microbiana , Virulência
9.
PLoS Pathog ; 13(8): e1006584, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28832676

RESUMO

The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments.


Assuntos
Genes Bacterianos/genética , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Virulência/genética , Animais , Modelos Animais de Doenças , Aptidão Genética/genética , Camundongos , Reação em Cadeia da Polimerase
10.
Mol Microbiol ; 103(3): 518-533, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27862457

RESUMO

The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Animais , Proteínas de Bactérias , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Biblioteca Gênica , Glucose/metabolismo , Hemólise , Manose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Óperon/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Streptococcus/genética , Streptococcus pyogenes/genética , Estreptolisinas , Virulência
11.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27993974

RESUMO

As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


Assuntos
Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Mutação , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/mortalidade , Virulência
12.
Infect Immun ; 84(4): 1016-1031, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26787724

RESUMO

Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.


Assuntos
Sangue/microbiologia , Frutose/metabolismo , Neutrófilos/fisiologia , Óperon/fisiologia , Streptococcus pyogenes/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Atividade Bactericida do Sangue/fisiologia , Mapeamento Cromossômico , Cromossomos Bacterianos , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Mutação , Infecções Estreptocócicas/microbiologia
13.
Mol Microbiol ; 98(5): 946-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278404

RESUMO

The sugar nucleotide dTDP-L-rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four-step dTDP-L-rhamnose biosynthesis pathway is catalyzed by dTDP-4-dehydrorhamnose reductases (RmlD). RmlD from the Gram-negative bacterium Salmonella is the only structurally characterized family member and requires metal-dependent homo-dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram-negative and Gram-positive RmlD homologues predicts that enzymes from all Gram-positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn-sequencing and generation of a conditional-expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram-positive bacteria and a subset of Gram-negative bacteria. These results will help future screens for novel inhibitors of dTDP-L-rhamnose biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Streptococcus pyogenes/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/química , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Bactérias Gram-Positivas/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Mutação , Açúcares de Nucleosídeo Difosfato/biossíntese , Estrutura Terciária de Proteína , Ramnose/análogos & derivados , Ramnose/biossíntese , Ramnose/metabolismo , Alinhamento de Sequência , Streptococcus pyogenes/genética , Nucleotídeos de Timina/biossíntese , Nucleotídeos de Timina/metabolismo
14.
Infect Immun ; 81(3): 862-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23297387

RESUMO

The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes.


Assuntos
Sangue/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Streptococcus pyogenes/genética , Mapeamento Cromossômico , Cromossomos Bacterianos , Aptidão Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Mutagênese Insercional , Mutação
15.
J Med Chem ; 66(20): 14303-14314, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37798258

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause high-morbidity infections. Due to its robust, flexible genome and ability to form biofilms, it can evade and rapidly develop resistance to antibiotics. Cationic conjugated oligoelectrolytes (COEs) have emerged as a promising class of antimicrobials. Herein, we report a series of amidine-containing COEs with high selectivity for bacteria. From this series, we identified 1b as the most active compound against P. aeruginosa (minimum inhibitory concentration (MIC) = 2 µg/mL) with low cytotoxicity (IC50 (HepG2) = 1024 µg/mL). The activity of 1b was not affected by known drug-resistant phenotypes of 100 diverse P. aeruginosa isolates. Moreover, 1b is bactericidal with a low propensity for P. aeruginosa to develop resistance. Furthermore, 1b is also able to inhibit biofilm formation at subinhibitory concentrations and kills P. aeruginosa in established biofilms. The in vivo efficacy of 1b was demonstrated in biofilm-associated murine wound infection models.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
16.
Virulence ; 14(1): 2186331, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976806

RESUMO

Antimicrobial resistance (AMR) is a worldwide problem, which is driving more preclinical research to find new treatments and countermeasures for drug-resistant bacteria. However, translational models in the preclinical space have remained static for years. To improve animal use ethical considerations, we assessed novel methods to evaluate survival after lethal infection with ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli) in pulmonary models of infection. Consistent with published lung infection models often used for novel antimicrobial development, BALB/c mice were immunosuppressed with cyclophosphamide and inoculated intranasally with individual ESKAPEE pathogens or sterile saline. Observations were recorded at frequent intervals to determine predictive thresholds for humane endpoint decision-making. Internal temperature was measured via implanted IPTT300 microchips, and external temperature was measured using a non-contact, infrared thermometer. Additionally, clinical scores were evaluated based on animal appearance, behaviour, hydration status, respiration, and body weight. Internal temperature differences between survivors and non-survivors were statistically significant for E. faecium, S. aureus, K. pneumoniae, A. baumannii, E. cloacae, and E. coli, and external temperature differences were statistically significant for S. aureus, K. pneumoniae, E. cloacae, and E. coli. Internal temperature more precisely predicted mortality compared to external temperature, indicating that a threshold of 85ºF (29.4ºC) was 86.0% predictive of mortality and 98.7% predictive of survival. Based on our findings, we recommend future studies involving BALB/c mice ESKAPEE pathogen infection use temperature monitoring as a humane endpoint threshold.


Assuntos
Enterococcus faecium , Staphylococcus aureus , Animais , Camundongos , Temperatura , Camundongos Endogâmicos BALB C , Escherichia coli , Antibacterianos/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
17.
Microorganisms ; 10(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014103

RESUMO

Streptococcus pyogenes, also known as the Group A Streptococcus (GAS), is a Gram-positive bacterial pathogen of major clinical significance. Despite remaining relatively susceptible to conventional antimicrobial therapeutics, GAS still causes millions of infections and hundreds of thousands of deaths each year worldwide. Thus, a need for prophylactic and therapeutic interventions for GAS is in great demand. In this study, we investigated the importance of the gene encoding the delta (δ) subunit of the GAS RNA polymerase, rpoE, for its impact on virulence during skin and soft-tissue infection. A defined 5448 mutant with an insertionally-inactivated rpoE gene was defective for survival in whole human blood and was attenuated for both disseminated lethality and lesion size upon mono-culture infection in mouse soft tissue. Furthermore, the mutant had reduced competitive fitness when co-infected with wild type (WT) 5448 in the mouse model. We were unable to attribute this attenuation to any observable growth defect, although colony size and the ability to grow at higher temperatures were both affected when grown with nutrient-rich THY media. RNA-seq of GAS grown in THY to late log phase found that mutation of rpoE significantly impacted (>2-fold) the expression of 429 total genes (205 upregulated, 224 downregulated), including multiple virulence and "housekeeping" genes. The arc operon encoding the arginine deiminase (ADI) pathway was the most upregulated in the rpoE mutant and this could be confirmed phenotypically. Taken together, these findings demonstrate that the delta (δ) subunit of RNA polymerase is vital in GAS gene expression and virulence.

18.
Methods Mol Biol ; 2136: 33-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430812

RESUMO

Transposon-sequencing (Tn-seq) has revolutionized forward-genetic analyses to study genotype-phenotype associations and interrogate bacterial cell physiology. The Tn-seq approach allows the en masse monitoring of highly complex mutant libraries, leveraging massive parallel DNA sequencing as a means to characterize the composition of these mutant pools on a genome-scale with unprecedented nucleotide-level high resolution. In this chapter, we present step-by-step protocols for Tn-seq analyses in the human pathogen Streptococcus pyogenes (Group A Streptococcus or GAS) using the mariner-based Krmit transposon. We detail how to generate highly complex Krmit mutant libraries in GAS and the en masse production of Krmit insertion tags for Illumina sequencing of the transposon-genome junctions for Tn-seq analyses. Most of the protocols presented here were developed and implemented using the S. pyogenes M1T1 serotype clinical isolate 5448, but they have been successfully applied to multiple GAS serotypes as well as other pathogenic Streptococci.


Assuntos
Elementos de DNA Transponíveis/genética , Análise de Sequência de DNA/métodos , Streptococcus pyogenes/genética , Primers do DNA/genética , Genes Essenciais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutagênese Insercional/genética
19.
Sci Rep ; 10(1): 15202, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938947

RESUMO

Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α - 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Hemoglobinas/farmacologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Orosomucoide/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética
20.
mBio ; 11(4)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636245

RESUMO

Bacterial biofilms are responsible for a variety of serious human infections and are notoriously difficult to treat due to their recalcitrance to antibiotics. Further work is necessary to elicit a full understanding of the mechanism of this antibiotic tolerance. The arginine deiminase (ADI) pathway is responsible for bacterial pH maintenance and is highly expressed during biofilm growth in multiple bacterial species. Using the group A Streptococcus (GAS) as a model human pathogen, the ADI pathway was demonstrated to contribute to biofilm growth. The inability of antibiotics to reduce GAS populations when in a biofilm was demonstrated by in vitro studies and a novel animal model of nasopharyngeal infection. However, disruption of the ADI pathway returned GAS biofilms to planktonic levels of antibiotic sensitivity, suggesting the ADI pathway is influential in biofilm-related antibiotic treatment failure and provides a new strategic target for the treatment of biofilm infections in GAS and potentially numerous other bacterial species.IMPORTANCE Biofilm-mediated bacterial infections are a major threat to human health because of their recalcitrance to antibiotic treatment. Through the study of Streptococcus pyogenes, a significant human pathogen that is known to form antibiotic-tolerant biofilms, we demonstrated the role that a bacterial pathway known for responding to acid stress plays in biofilm growth and antibiotic tolerance. This not only provides some insight into antibiotic treatment failure in S. pyogenes infections but also, given the widespread nature of this pathway, provides a potentially broad target for antibiofilm therapies. This discovery has the potential to impact the treatment of many different types of recalcitrant biofilm infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Hidrolases/metabolismo , Streptococcus pyogenes/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Streptococcus pyogenes/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa