Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Angiogenesis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842752

RESUMO

Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages. However, due to a lack of proper models, the expected role of angiogenesis in the metastatic dissemination of CoM is still unknown. We show that cells derived from two CoM cell lines induce a strong angiogenic response when xenografted in zebrafish larvae. CoM cells are highly glycolytic and secrete lactate, which recruits and polarizes human and zebrafish macrophages towards a M2-like phenotype. These macrophages elevate the levels of proangiogenic factors such as VEGF, TGF-ß, and IL-10 in the tumor microenvironment to induce an angiogenic response towards the engrafted CoM cells in vivo. Chemical ablation of zebrafish macrophages or inhibition of glycolysis in CoM cells terminates this response, suggesting that attraction of lactate-dependent macrophages into engrafted CoM cells drives angiogenesis and serves as a possible dissemination mechanism for glycolytic CoM cells.

2.
Angew Chem Int Ed Engl ; 63(5): e202316425, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38061013

RESUMO

Photoactivated chemotherapy (PACT) is a promising cancer treatment modality that kills cancer cells via photochemical uncaging of a cytotoxic drug. Most ruthenium-based photocages used for PACT are activated with blue or green light, which penetrates sub-optimally into tumor tissues. Here, we report amide functionalization as a tool to fine-tune the toxicity and excited states of a terpyridine-based ruthenium photocage. Due to conjugation of the amide group with the terpyridine π system in the excited state, the absorption of red light (630 nm) increased 8-fold, and the photosubstitution rate rose 5-fold. In vitro, red light activation triggered inhibition of tubulin polymerization, which led to apoptotic cell death both in normoxic (21 % O2 ) and hypoxic (1 % O2 ) cancer cells. In vivo, red light irradiation of tumor-bearing mice demonstrated significant tumor volume reduction (45 %) with improved biosafety, thereby demonstrating the clinical potential of this compound.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Animais , Camundongos , Rutênio/farmacologia , Rutênio/química , Polimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Microtúbulos
3.
J Am Chem Soc ; 145(27): 14963-14980, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379365

RESUMO

To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 µM for the binding of Λ-[1]Cl2 to αIIbß3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Complexos de Coordenação , Pró-Fármacos , Rutênio , Animais , Humanos , Camundongos , Rutênio/farmacologia , Rutênio/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Integrinas , Peptídeos Cíclicos , Peptídeos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
4.
Breast Cancer Res ; 25(1): 51, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147730

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS: Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS: We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION: Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Ciclina-Dependentes/genética , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias
5.
Breast Cancer Res Treat ; 198(3): 583-596, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826702

RESUMO

Hypoxia is linked to disease progression and poor prognosis in several cancers, including breast cancer. Cancer cells can encounter acute, chronic, and/or intermittent periods of oxygen deprivation and it is poorly understood how the different breast cancer subtypes respond to such hypoxia regimes. Here, we assessed the response of representative cell lines for the luminal and basal A subtype to acute (24 h) and chronic hypoxia (5 days). High throughput targeted transcriptomics analysis showed that HIF-related pathways are significantly activated in both subtypes. Indeed, HIF1⍺ nuclear accumulation and activation of the HIF1⍺ target gene CA9 were comparable. Based on the number of differentially expressed genes: (i) 5 days of exposure to hypoxia induced a more profound transcriptional reprogramming than 24 h, and (ii) basal A cells were less affected by acute and chronic hypoxia as compared to luminal cells. Hypoxia-regulated gene networks were identified of which hub genes were associated with worse survival in breast cancer patients. Notably, while chronic hypoxia altered the regulation of the cell cycle in both cell lines, it induced two distinct adaptation programs in these subtypes. Mainly genes controlling central carbon metabolism were affected in the luminal cells whereas genes controlling the cytoskeleton were affected in the basal A cells. In agreement, in response to chronic hypoxia, lactate secretion was more prominently increased in the luminal cell lines which were associated with the upregulation of the GAPDH glycolytic enzyme. This was not observed in the basal A cell lines. In contrast, basal A cells displayed enhanced cell migration associated with more F-actin stress fibers whereas luminal cells did not. Altogether, these data show distinct responses to acute and chronic hypoxia that differ considerably between luminal and basal A cells. This differential adaptation is expected to play a role in the progression of these different breast cancer subtypes.


Assuntos
Neoplasias da Mama , Neoplasia de Células Basais , Humanos , Feminino , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Neoplasia de Células Basais/genética , Hipóxia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
PLoS Comput Biol ; 18(7): e1010264, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35802572

RESUMO

Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics.


Assuntos
Proteínas Imediatamente Precoces , Proteínas Proto-Oncogênicas c-mdm2 , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Hepatócitos/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cell Biol Toxicol ; 39(2): 415-433, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505273

RESUMO

Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/farmacologia
8.
Am J Transplant ; 22(2): 344-370, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657378

RESUMO

Despite decennia of research and numerous successful interventions in the preclinical setting, renal ischemia reperfusion (IR) injury remains a major problem in clinical practice, pointing toward a translational gap. Recently, two clinical studies on renal IR injury (manifested either as acute kidney injury or as delayed graft function) identified metabolic derailment as a key driver of renal IR injury. It was reasoned that these unambiguous metabolic findings enable direct alignment of clinical with preclinical data, thereby providing the opportunity to elaborate potential translational hurdles between preclinical research and the clinical context. A systematic review of studies that reported metabolic data in the context of renal IR was performed according to the PRISMA guidelines. The search (December 2020) identified 35 heterogeneous preclinical studies. The applied methodologies were compared, and metabolic outcomes were semi-quantified and aligned with the clinical data. This review identifies profound methodological challenges, such as the definition of IR injury, the follow-up time, and sampling techniques, as well as shortcomings in the reported metabolic information. In light of these findings, recommendations are provided in order to improve the translatability of preclinical models of renal IR injury.


Assuntos
Injúria Renal Aguda , Transplante de Rim , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Humanos , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo
9.
Mol Biol Rep ; 49(11): 10961-10973, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057753

RESUMO

Hypoxia has been linked to elevated instances of therapeutic resistance in breast cancer. The exposure of proliferating cancer cells to hypoxia has been shown to induce an aggressive phenotype conducive to invasion and metastasis. Regions of the primary tumors in the breast may be exposed to different types of hypoxia including acute, chronic or intermittent. Intermittent hypoxia (IH), also called cyclic hypoxia, is caused by exposure to cycles of hypoxia and reoxygenation (H-R cycles). Importantly, there is currently no consensus amongst the scientific community on the total duration of hypoxia, the oxygen level, and the possible presence of H-R cycles. In this review, we discuss current methods of hypoxia research, to explore how exposure regimes used in experiments are connected to signaling by different hypoxia inducible factors (HIFs) and to distinct cellular responses in the context of the hallmarks of cancer. We highlight discrepancies in the existing literature on hypoxia research within the field of breast cancer in particular and propose a clear definition of acute, chronic, and intermittent hypoxia based on HIF activation and cellular responses: (i) acute hypoxia is when the cells are exposed for no more than 24 h to an environment with 1% O2 or less; (ii) chronic hypoxia is when the cells are exposed for more than 48 h to an environment with 1% O2 or less and (iii) intermittent hypoxia is when the cells are exposed to at least two rounds of hypoxia (1% O2 or less) separated by at least one period of reoxygenation by exposure to normoxia (8.5% O2 or higher). Our review provides for the first time a guideline for definition of hypoxia related terms and a clear foundation for hypoxia related in vitro (breast) cancer research.


Assuntos
Hipóxia , Neoplasias , Humanos , Oxigênio , Transdução de Sinais
10.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480604

RESUMO

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Assuntos
Heme Oxigenase-1/genética , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Maleatos/administração & dosagem , Maleatos/toxicidade , Pessoa de Meia-Idade , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidade , RNA Mensageiro/genética , Fatores de Tempo
11.
Kidney Int ; 98(6): 1476-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781105

RESUMO

Delayed graft function is the manifestation of ischemia reperfusion injury in the context of kidney transplantation. While hundreds of interventions successfully reduce ischemia reperfusion injury in experimental models, all clinical interventions have failed. This explorative clinical evaluation examined possible metabolic origins of clinical ischemia reperfusion injury combining data from 18 pre- and post-reperfusion tissue biopsies with 36 sequential arteriovenous blood samplings over the graft in three study groups. These groups included living and deceased donor grafts with and without delayed graft function. Group allocation was based on clinical outcome. Magic angle NMR was used for tissue analysis and mass spectrometry-based platforms were used for plasma analysis. All kidneys were functional at one-year. Integration of metabolomic data identified a discriminatory profile to recognize future delayed graft function. This profile was characterized by post-reperfusion ATP/GTP catabolism (significantly impaired phosphocreatine recovery and significant persistent (hypo)xanthine production) and significant ongoing tissue damage. Failing high-energy phosphate recovery occurred despite activated glycolysis, fatty-acid oxidation, glutaminolysis and autophagia, and related to a defect at the level of the oxoglutarate dehydrogenase complex in the Krebs cycle. Clinical delayed graft function due to ischemia reperfusion injury associated with a post-reperfusion metabolic collapse. Thus, efforts to quench delayed graft function due to ischemia reperfusion injury should focus on conserving metabolic competence, either by preserving the integrity of the Krebs cycle and/or by recruiting metabolic salvage pathways.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Humanos , Rim , Transplante de Rim/efeitos adversos , Reperfusão , Traumatismo por Reperfusão/metabolismo
12.
J Am Chem Soc ; 141(46): 18444-18454, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31625740

RESUMO

Marine alkaloid rigidins are cytotoxic compounds known to kill cancer cells at nanomolar concentrations by targeting the microtubule network. Here, a rigidin analogue containing a thioether group was "caged" by coordination of its thioether group to a photosensitive ruthenium complex. In the dark, the coordinated ruthenium fragment prevented the rigidin analogue from inhibiting tubulin polymerization and reduced its toxicity in 2D cancer cell line monolayers, 3D lung cancer tumor spheroids (A549), and a lung cancer tumor xenograft (A549) in nude mice. Photochemical activation of the prodrug upon green light irradiation led to the photosubstitution of the thioether ligand by water, thereby releasing the free rigidin analogue capable of inhibiting the polymerization of tubulin. In cancer cells, such photorelease was accompanied by a drastic reduction of cell growth, not only when the cells were grown in normoxia (21% O2) but also remarkably in hypoxic conditions (1% O2). In vivo, low toxicity was observed at a dose of 1 mg·kg-1 when the compound was injected intraperitoneally, and light activation of the compound in the tumor led to 30% tumor volume reduction, which represents the first demonstration of the safety and efficacy of ruthenium-based photoactivated chemotherapy compounds in a tumor xenograft.


Assuntos
Alcaloides/química , Alcaloides/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/química , Pirimidinas/uso terapêutico , Pirróis/química , Pirróis/uso terapêutico , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Luz , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Oxigênio/metabolismo , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Hipóxia Tumoral/efeitos dos fármacos
13.
Angew Chem Int Ed Engl ; 56(38): 11549-11553, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28666065

RESUMO

We describe two water-soluble ruthenium complexes, [1]Cl2 and [2]Cl2 , that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm-2 ) of red light in an oxygen-independent manner. Using a specific NAMPT activity assay, up to an 18-fold increase in inhibition potency was measured upon red-light activation of [2]Cl2 , while [1]Cl2 was thermally unstable. For the first time, the dark and red-light-induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2 ). In skin (A431) and lung (A549) cancer cells, a 3- to 4-fold increase in cytotoxicity was found upon red-light irradiation for [2]Cl2 , whether the cells were cultured and irradiated with 1 % or 21 % O2 . These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient.


Assuntos
Antineoplásicos/farmacologia , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Luz , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Hipóxia , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos Organometálicos/química , Processos Fotoquímicos , Fotoquimioterapia , Rutênio/química , Relação Estrutura-Atividade
14.
Mol Syst Biol ; 10: 744, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25086087

RESUMO

Over the last decade, the field of cancer metabolism has mainly focused on studying the role of tumorigenic metabolic rewiring in supporting cancer proliferation. Here, we perform the first genome-scale computational study of the metabolic underpinnings of cancer migration. We build genome-scale metabolic models of the NCI-60 cell lines that capture the Warburg effect (aerobic glycolysis) typically occurring in cancer cells. The extent of the Warburg effect in each of these cell line models is quantified by the ratio of glycolytic to oxidative ATP flux (AFR), which is found to be highly positively associated with cancer cell migration. We hence predicted that targeting genes that mitigate the Warburg effect by reducing the AFR may specifically inhibit cancer migration. By testing the anti-migratory effects of silencing such 17 top predicted genes in four breast and lung cancer cell lines, we find that up to 13 of these novel predictions significantly attenuate cell migration either in all or one cell line only, while having almost no effect on cell proliferation. Furthermore, in accordance with the predictions, a significant reduction is observed in the ratio between experimentally measured ECAR and OCR levels following these perturbations. Inhibiting anti-migratory targets is a promising future avenue in treating cancer since it may decrease cytotoxic-related side effects that plague current anti-proliferative treatments. Furthermore, it may reduce cytotoxic-related clonal selection of more aggressive cancer cells and the likelihood of emerging resistance.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Biologia Computacional/métodos , Glicólise , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Inativação Gênica , Humanos , Ácido Láctico/metabolismo , Modelos Biológicos , RNA Interferente Pequeno/genética
15.
J Cell Sci ; 125(Pt 19): 4498-506, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22767508

RESUMO

Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and enable cell proliferation, survival and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is unclear. We have used photobleaching assays of whole cells to determine the protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffuse cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/enzimologia , Paxilina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Citosol/efeitos dos fármacos , Citosol/metabolismo , Difusão , Células Epiteliais/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Adesões Focais/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Cinética , Células LLC-PK1 , Ligantes , Modelos Biológicos , Método de Monte Carlo , Nocodazol/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Fatores de Tempo
16.
Chem Commun (Camb) ; 60(49): 6308-6311, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38818705

RESUMO

The famous ''light-switch'' ruthenium complex [Ru(bpy)2(dppz)](PF6)2 (1) has been long known for its DNA binding properties in vitro. However, the biological utility of this compound has been hampered by its poor cellular uptake in living cells. Here we report a bioimaging application of 1 as cell viability probe in both 2D cells monolayer and 3D multi-cellular tumor spheroids of various human cancer cell lines (U87, HepG2, A549). When compared to propidium iodide, a routinely used cell viability probe, 1 was found to enhance the staining of dead cells in particular in tumor spheroids. 1 has high photostability, longer Stokes shift, and displays lower cytotoxicity compared to propidium iodide, which is a known carcinogenic. Finally, 1 was also found to displace the classical DNA binding dye Hoechst in dead cells, which makes it a promising dye for time-dependent imaging of dead cells in cell cultures, including multi-cellular tumor spheroids.


Assuntos
Sobrevivência Celular , Complexos de Coordenação , DNA , Rutênio , Esferoides Celulares , Humanos , Sobrevivência Celular/efeitos dos fármacos , Esferoides Celulares/metabolismo , Rutênio/química , DNA/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Luz , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
17.
Toxicol Sci ; 198(1): 14-30, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015832

RESUMO

Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene coregulation network-based transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of toxicogenomic data. Here we performed an extensive concentration time course response-toxicogenomic study in the HepG2 cell line exposed to 20 DILI compounds, 7 reference compounds for stress response pathways, and 10 agonists for cytokines and growth factor receptors. We performed whole transcriptome targeted RNA sequencing to more than 500 conditions and applied weighted gene coregulated network analysis to the transcriptomics data followed by the identification of gene coregulated networks (modules) that were strongly modulated upon the exposure of DILI compounds. Preservation analysis on the module responses of HepG2 and PHH demonstrated highly preserved adaptive stress response gene coregulated networks. We correlated gene coregulated networks with cell death onset and causal relationships of 67 critical target genes of these modules with the onset of cell death was evaluated using RNA interference screening. We identified GTPBP2, HSPA1B, IRF1, SIRT1, and TSC22D3 as essential modulators of DILI compound-induced cell death. These genes were also induced by DILI compounds in PHH. Altogether, we demonstrate the application of large transcriptome datasets combined with network-based analysis and biological validation to uncover the candidate determinants of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transcriptoma , Humanos , Células Hep G2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Doença Hepática Induzida por Substâncias e Drogas/genética
18.
J Med Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924492

RESUMO

Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound Ru-STF31 in the glioblastoma cancer cell line, U87MG. Ru-STF31 targets nicotinamide phosphoribosyltransferase (NAMPT), an enzyme overexpressed in U87MG. Ru-STF31 is activated by red light irradiation and releases two photoproducts: the ruthenium cage and the cytotoxic inhibitor STF31. This study shows that Ru-STF31 can significantly decrease intracellular NAD+ levels in both normoxic (21% O2) and hypoxic (1% O2) U87MG cells. Strikingly, NAD+ depletion by light activation of Ru-STF31 in hypoxic U87MG cells could not be rescued by the addition of extracellular NAD+. Our data suggest an oxygen-dependent active role of the ruthenium photocage released by light activation.

19.
Proc Natl Acad Sci U S A ; 107(14): 6340-5, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308542

RESUMO

Annexin A1 (AnxA1) is a candidate regulator of the epithelial- to mesenchymal (EMT)-like phenotypic switch, a pivotal event in breast cancer progression. We show here that AnxA1 expression is associated with a highly invasive basal-like breast cancer subtype both in a panel of human breast cancer cell lines as in breast cancer patients and that AnxA1 is functionally related to breast cancer progression. AnxA1 knockdown in invasive basal-like breast cancer cells reduced the number of spontaneous lung metastasis, whereas additional expression of AnxA1 enhanced metastatic spread. AnxA1 promotes metastasis formation by enhancing TGFbeta/Smad signaling and actin reorganization, which facilitates an EMT-like switch, thereby allowing efficient cell migration and invasion of metastatic breast cancer cells.


Assuntos
Anexina A1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Anexina A1/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Transplante de Neoplasias
20.
Curr Opin Biotechnol ; 82: 102963, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356380

RESUMO

Single-cell metabolomics (SCMs) is a powerful tool for studying cellular heterogeneity by providing insight into the differences between individual cells. With the development of a set of promising SCMs pipelines, this maturing technology is expected to be widely used in biomedical research. However, before SCMs is ready for primetime, there are some challenges to overcome. In this review, we summarize the trends and challenges in the development of SCMs. We also highlight the latest methodologies, applications, and sketch the perspective for integration with other omics and imaging approaches.


Assuntos
Metabolômica , Análise de Célula Única , Análise de Célula Única/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa