Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(1): 63-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37303191

RESUMO

Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.


This review focuses on the available drivers to increase the pool of free (i.e. phytoavailable) metal(loid)s in the soil solution, with a specific focus on the ability of microorganisms to degrade dissolved organic matter for enriching this pool, and then to substantially improve phytoextraction performance.


Assuntos
Poluentes do Solo , Solo , Solo/química , Matéria Orgânica Dissolvida , Biodegradação Ambiental , Metais , Poluentes do Solo/metabolismo
2.
Environ Sci Pollut Res Int ; 31(20): 29374-29384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573580

RESUMO

Lead (Pb) is commonly found in urban soils and can transfer to vegetables. This entails a health risk for consumers of garden crops. The increasing demand of gardening on urban soil linked to the population increase and concentration in urban areas induces an increase in the risk, as people could be forced to cultivate contaminated soils. The aim of this study was to evaluate the performance of a cropping system that allows simultaneously (i) growing eatable vegetables that accumulate few Pb and (ii) cleaning up the soil with other plants by phytoextraction. The tests were carried out in an allotment garden (Nantes, France) where soils are moderately enriched by Pb from geogenic origin (178 mg.kg-1 of dry soil on average). Four vegetables known to accumulate slightly Pb (Solanum lycopersicum, Brassica oleracea cv. "Capitata," Solanum tuberosum, and Phaseolus vulgaris) were grown. The in situ ability of Brassica juncea L. to progressively absorb the phytoavailable Pb of the soil was assessed during four seasons. Analyses of the edible parts of the four vegetables confirmed that they can all be safely cultivated. The accumulation of Pb in B. juncea shoots was too low (ca. 1 mg.kg-1 of dry matter at best) for phytoextraction purposes. Our results confirm that it is possible to grow very low Pb-accumulating vegetables on soils moderately contaminated with Pb, although it was not possible to reduce phytoavailable Pb rapidly enough with B. juncea. This study identifies possible avenues of research to improve this cropping system by using appropriate vegetables that will allow food production to continue on moderately contaminated soil while cleaning it up.


Assuntos
Chumbo , Poluentes do Solo , Solo , Verduras , Chumbo/metabolismo , França , Solo/química , Jardins , Biodegradação Ambiental
3.
Sci Total Environ ; 924: 171347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432376

RESUMO

The contribution of soil health to global health receives a growing interest, especially in urban environment. Therefore, there is a true need to develop methods to evaluate ecological functions provided by urban soils in order to promote smart urban planning. This work aims first at identifying relevant soil indicators based either on in situ description, in situ measurement or lab analysis. Then, 9 soil functions and sub-functions were selected to meet the main expectations regarding soil health in urban contexts. A crucial step of the present research was then to select adequate indicators for each soil function and then to create adapted reference frameworks; they were in the form of 4 classes with scores ranging from 0 to 3. All the reference frameworks were developed to evaluate soil indicators in order to score soil functions, either by using existing scientific or technical standards or references or based on the expertise of the co-authors. Our model was later tested on an original database of 109 different urban soils located in 7 cities of Western Europe and under various land uses. The scores calculated for 8 soil functions of 109 soils followed a Gaussian distribution. The scoring successfully expressed the strong contrasts between the various soils; the lowest scores were calculated for sealed soils and soils located in urban brownfields, whereas the highest were found for soils located in city parks or urban agriculture. Despite requiring a soil expertise, the proposed approach is easy to implement and could help reveal the true potential of urban soils in order to promote smart urban planning and enhance their contribution to global health.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa