Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Mass Spectrom (Chichester) ; 15(2): 275-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19423912

RESUMO

The structural analysis of sulfated carbohydrates such as glycosaminoglycans (GAGs) has been a long- standing challenge for the field of mass spectrometry. The dissociation of sulfated carbohydrates by collisionally- activated dissociation (CAD) or infrared multiphoton dissociation (IRMPD), which activate ions via vibrational excitation, typically result in few cleavages and abundant SO(3) loss for highly sulfated GAGs such as heparin and heparan sulfate, hampering efforts to determine sites of modification. The recent application of electron activation techniques, specifically electron capture dissociation (ECD) and electron detachment dissociation (EDD), provides a marked improvement for the mass spectrometry characterization of GAGs. In this work, we compare ECD, EDD and IRMPD for the dissociation of the highly sulfated carbohydrate sucrose octasulfate (SOS). Both positive and negative multiply-charged ions are investigated. ECD, EDD and IRMPD of SOS produce abundant and reproducible fragmentation. The product ions produced by ECD are quite different than those produced by IRMPD of SOS positive ions, suggesting different dissociation mechanisms as a result of electronic versus vibrational excitation. The product ions produced by EDD and IRMPD of SOS negative ions also differ from each other. Evidence for SO(3) rearrangement exists in the negative ion IRMPD data, complicating the assignment of product ions.


Assuntos
Elétrons , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sacarose/análogos & derivados , Análise de Fourier , Sacarose/química , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa