Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(1): 5-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563657

RESUMO

Scientific discovery has advanced human society in countless ways, but research requires the expenditure of energy and resources. This Scientific Life article details one laboratory's efforts to reduce the environmental impact of wet-lab research and provides a series of resources to improve lab sustainability.

2.
STAR Protoc ; 4(3): 102457, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556320

RESUMO

Mammalian cells can die by apoptosis or by one of several non-apoptotic mechanisms, such as ferroptosis. Here, we present a protocol to distinguish ferroptosis from other cell death mechanisms in cultured cells. We describe steps for seeding cells, administering mechanism-specific cell death inducers and inhibitors, and measuring cell death and viability. We then detail the use of molecular markers to verify mechanisms of cell death. This protocol can be used to identify and distinguish ferroptosis in 2D and 3D cultures. For complete details on the use and execution of this protocol, please refer to Ko, et al. (2019),1 Magtanong, et al. (2022),2 and Armenta, et al. (2022).3.


Assuntos
Ferroptose , Animais , Morte Celular , Apoptose , Células Cultivadas , Mamíferos
3.
ACS Nano ; 17(23): 23374-23390, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688780

RESUMO

Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL in vitro, it was highly toxic in vivo, resulting in a prohibitively narrow therapeutic window. We, therefore, developed a targeted nanomedicine delivery platform to maintain the therapeutic potency of this combination while minimizing its toxicity via packaging and targeted delivery of a stapled peptide. We developed a CD19-targeted polymersome using block copolymers of poly(ethylene glycol) disulfide linked to poly(propylene sulfide) (PEG-SS-PPS) for ATSP-7041 delivery into DLBCL cells. Intracellular delivery was optimized in vitro and validated in vivo by using an aggressive human DLBCL xenograft model. Targeted delivery of ATSP-7041 unlocked the ability to systemically cotreat with ABT-263, resulting in delayed tumor growth, prolonged survival, and no overt toxicity. This work demonstrates a proof-of-concept for antigen-specific targeting of polymersome nanomedicines, targeted delivery of a stapled peptide in vivo, and synergistic dual intrinsic apoptotic therapy against DLBCL via direct p53 reactivation and BCL-2 family modulation.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Preparações Farmacêuticas , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Peptídeos/metabolismo , Apoptose
4.
Nat Commun ; 12(1): 7244, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903734

RESUMO

The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.


Assuntos
Evolução Clonal , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Feminino , Frequência do Gene , Heterogeneidade Genética , Genótipo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Modelos Genéticos , Mutação , Prognóstico , Fatores de Risco
5.
Oncotarget ; 10(58): 6219-6233, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31692812

RESUMO

BCL-2 family proteins are central regulators of apoptosis and represent prime therapeutic targets for overcoming cell death resistance in malignancies. However, plasticity of anti-apoptotic members, such as MCL-1, often allows for a switch in cell death dependency patterns that lie outside the binding profile of targeted BH3-mimetics. Therefore discovery of therapeutics that effectively inactivate all anti-apoptotic members is a high priority. To address this we tested the potency of a hydrocarbon stapled BIM BH3 peptide (BIM SAHB A ) to overcome both BCL-2 and MCL-1 apoptotic resistance given BIM's naturally wide ranging affinity for all BCL-2 family multidomain members. BIM SAHB A effectively killed diffuse large B-cell lymphoma (DLBCL) cell lines regardless of their anti-apoptotic dependence. Despite BIM BH3's ability to bind all BCL-2 anti-apoptotic proteins, BIM SAHB A 's dominant intracellular target was MCL-1 and this specificity was exploited in sequenced combination BH3-mimetic treatments targeting BCL-2, BCL-XL, and BCL-W. Extending this MCL-1 functional dependence, mouse embryonic fibroblasts (MEFs) deficient in MCL-1 were resistant to mitochondrial changes induced by BIM SAHB A . This study demonstrates the importance of understanding BH3 mimetic functional intracellular affinities for optimized use and highlights the diagnostic and therapeutic promise of a BIM BH3 peptide mimetic as a potential MCL-1 inhibitor.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa