Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574673

RESUMO

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Assuntos
Caenorhabditis elegans , Glicoproteínas , Hormônios , Receptores Acoplados a Proteínas G , Animais , Sequência de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/genética
2.
J Biol Chem ; 298(12): 102614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265586

RESUMO

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Assuntos
Prolil Hidroxilases , Isomerases de Dissulfetos de Proteínas , Humanos , Domínio Catalítico , Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 116(35): 17251-17260, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395737

RESUMO

Microsomal triglyceride transfer protein (MTP) plays an essential role in lipid metabolism, especially in the biogenesis of very low-density lipoproteins and chylomicrons via the transfer of neutral lipids and the assembly of apoB-containing lipoproteins. Our understanding of the molecular mechanisms of MTP has been hindered by a lack of structural information of this heterodimeric complex comprising an MTPα subunit and a protein disulfide isomerase (PDI) ß-subunit. The structure of MTP presented here gives important insights into the potential mechanisms of action of this essential lipid transfer molecule, structure-based rationale for previously reported disease-causing mutations, and a means for rational drug design against cardiovascular disease and obesity. In contrast to the previously reported structure of lipovitellin, which has a funnel-like lipid-binding cavity, the lipid-binding site is encompassed in a ß-sandwich formed by 2 ß-sheets from the C-terminal domain of MTPα. The lipid-binding cavity of MTPα is large enough to accommodate a single lipid. PDI independently has a major role in oxidative protein folding in the endoplasmic reticulum. Comparison of the mechanism of MTPα binding by PDI with previously published structures gives insights into large protein substrate binding by PDI and suggests that the previous structures of human PDI represent the "substrate-bound" and "free" states rather than differences arising from redox state.


Assuntos
Proteínas de Transporte/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação Proteica em Folha beta
4.
J Biol Chem ; 292(7): 2714-2728, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28011634

RESUMO

CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Ligantes , Ligação Proteica , Conformação Proteica
5.
PLoS Pathog ; 11(3): e1004700, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738876

RESUMO

Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.


Assuntos
Proteínas de Bactérias/metabolismo , Droseraceae/metabolismo , Periplasma/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Bordetella pertussis/metabolismo , Cristalografia por Raios X , Droseraceae/química , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Transdução de Sinais/fisiologia , Fatores de Transcrição/química , Virulência
6.
Nature ; 474(7349): 49-53, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21637253

RESUMO

Type 1 pili are the archetypal representative of a widespread class of adhesive multisubunit fibres in Gram-negative bacteria. During pilus assembly, subunits dock as chaperone-bound complexes to an usher, which catalyses their polymerization and mediates pilus translocation across the outer membrane. Here we report the crystal structure of the full-length FimD usher bound to the FimC-FimH chaperone-adhesin complex and that of the unbound form of the FimD translocation domain. The FimD-FimC-FimH structure shows FimH inserted inside the FimD 24-stranded ß-barrel translocation channel. FimC-FimH is held in place through interactions with the two carboxy-terminal periplasmic domains of FimD, a binding mode confirmed in solution by electron paramagnetic resonance spectroscopy. To accommodate FimH, the usher plug domain is displaced from the barrel lumen to the periplasm, concomitant with a marked conformational change in the ß-barrel. The amino-terminal domain of FimD is observed in an ideal position to catalyse incorporation of a newly recruited chaperone-subunit complex. The FimD-FimC-FimH structure provides unique insights into the pilus subunit incorporation cycle, and captures the first view of a protein transporter in the act of secreting its cognate substrate.


Assuntos
Adesinas de Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Modelos Moleculares , Adesinas de Escherichia coli/metabolismo , Cristalização , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
7.
J Biol Chem ; 290(51): 30291-305, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26491011

RESUMO

Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is mediated by a pair of O-GlcNAc-transferase and O-GlcNAc hydrolase enzymes operating on a large number of substrate proteins. Protein O-GlcNAcylation is responsive to glucose and flux through the hexosamine biosynthetic pathway. Thus, a close relationship is thought to exist between the level of O-GlcNAc proteins within and the general metabolic state of the cell. Although isolated apparent orthologues of these enzymes are present in bacterial genomes, their biological functions remain largely unexplored. It is possible that understanding the function of these proteins will allow development of reductionist models to uncover the principles of O-GlcNAc signaling. Here, we identify orthologues of both O-GlcNAc cycling enzymes in the genome of the thermophilic eubacterium Thermobaculum terrenum. The O-GlcNAcase and O-GlcNAc-transferase are co-expressed and, like their mammalian orthologues, localize to the cytoplasm. The O-GlcNAcase orthologue possesses activity against O-GlcNAc proteins and model substrates. We describe crystal structures of both enzymes, including an O-GlcNAcase·peptide complex, showing conservation of active sites with the human orthologues. Although in vitro activity of the O-GlcNAc-transferase could not be detected, treatment of T. terrenum with an O-GlcNAc-transferase inhibitor led to inhibition of growth. T. terrenum may be the first example of a bacterium possessing a functional O-GlcNAc system.


Assuntos
Acetilglucosamina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Humanos
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2430-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195756

RESUMO

The presence of pseudo-symmetry in a macromolecular crystal and its interplay with twinning may lead to an incorrect space-group (SG) assignment. Moreover, if the pseudo-symmetry is very close to an exact crystallographic symmetry, the structure can be solved and partially refined in the wrong SG. Typically, in such incorrectly determined structures all or some of the pseudo-symmetry operations are, in effect, taken for crystallographic symmetry operations and vice versa. A mistake only becomes apparent when the R(free) ceases to decrease below 0.39 and further model rebuilding and refinement cannot improve the refinement statistics. If pseudo-symmetry includes pseudo-translation, the uncertainty in SG assignment may be associated with an incorrect choice of origin, as demonstrated by the series of examples provided here. The program Zanuda presented in this article was developed for the automation of SG validation. Zanuda runs a series of refinements in SGs compatible with the observed unit-cell parameters and chooses the model with the highest symmetry SG from a subset of models that have the best refinement statistics.


Assuntos
Substâncias Macromoleculares/química , Automação , Humanos , Lectinas Tipo C/química , Estrutura Molecular , Conformação Proteica , Receptores de Superfície Celular/química
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1680-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914979

RESUMO

Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.


Assuntos
Proteínas Musculares/química , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Humanos , Proteínas Musculares/genética , Reação em Cadeia da Polimerase , Conformação Proteica
10.
Biochim Biophys Acta ; 1824(3): 422-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22197591

RESUMO

D-Serine dehydratase from Escherichia coli is a member of the ß-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97Å-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55Å resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the ß-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Hidroliases/química , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo
11.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 806-819, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594303

RESUMO

In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.


Assuntos
Cristalografia por Raios X , Difração de Raios X
12.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293010

RESUMO

TELSAM crystallization promises to become a revolutionary tool for the facile crystallization of proteins. TELSAM can increase the rate of crystallization and form crystals at low protein concentrations without direct contact between TELSAM polymers and, in some cases, with very minimal crystal contacts overall (Nawarathnage et al ., 2022). To further understand and characterize TELSAM-mediated crystallization, we sought to understand the requirements for the composition of the linker between TELSAM and the fused target protein. We evaluated four different linkers Ala-Ala, Ala-Val, Thr-Val, and Thr-Thr, between 1TEL and the human CMG2 vWa domain. We compared the number of successful crystallization conditions, the number of crystals, the average and best diffraction resolution, and the refinement parameters for the above constructs. We also tested the effect of the fusion protein SUMO on crystallization. We discovered that rigidification of the linker improved diffraction resolution, likely by decreasing the number of possible orientations of the vWa domains in the crystal, and that omitting the SUMO domain from the construct also improved the diffraction resolution. Synopsis: We demonstrate that the TELSAM protein crystallization chaperone can enable facile protein crystallization and high-resolution structure determination. We provide evidence to support the use of short but flexible linkers between TELSAM and the protein of interest and to support the avoidance of cleavable purification tags in TELSAM-fusion constructs.

13.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 925-943, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747038

RESUMO

TELSAM-fusion crystallization has the potential to become a revolutionary tool for the facile crystallization of proteins. TELSAM fusion can increase the crystallization rate and enable crystallization at low protein concentrations, in some cases with minimal crystal contacts [Nawarathnage et al. (2022), Open Biol. 12, 210271]. Here, requirements for the linker composition between 1TEL and a fused CMG2 vWa domain were investigated. Ala-Ala, Ala-Val, Thr-Val and Thr-Thr linkers were evaluated, comparing metrics for crystallization propensity and crystal order. The effect on crystallization of removing or retaining the purification tag was then tested. It was discovered that increasing the linker bulk and retaining the 10×His purification tag improved the diffraction resolution, likely by decreasing the number of possible vWa-domain orientations in the crystal. Additionally, it was discovered that some vWa-domain binding modes are correlated with scrambling of the 1TEL polymer orientation in crystals and an effective mitigation strategy for this pathology is presented.


Assuntos
Proteínas , Cristalização
14.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 706-720, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428847

RESUMO

Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.


Assuntos
Muramidase , Peptidoglicano , Muramidase/química , Sequência de Aminoácidos , Modelos Moleculares , Glicosídeo Hidrolases/química , Parede Celular
15.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
16.
J Biol Chem ; 286(8): 6808-19, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21147767

RESUMO

Spore formation in Bacillus subtilis begins with an asymmetric cell division, following which differential gene expression is established by alternative compartment-specific RNA polymerase σ factors. The spoIISAB operon of B. subtilis was identified as a locus whose mutation leads to increased activity of the first sporulation-specific sigma factor, σ(F). Inappropriate spoIISA expression causes lysis of vegetatively growing B. subtilis cells and Escherichia coli cells when expressed heterologously, effects that are countered by co-expression of spoIISB, identifying SpoIISA-SpoIISB as a toxin-antitoxin system. SpoIISA has three putative membrane-spanning segments and a cytoplasmic domain. Here, the crystal structure of a cytoplasmic fragment of SpoIISA (CSpoIISA) in complex with SpoIISB has been determined by selenomethionine-multiwavelength anomalous dispersion phasing to 2.5 Å spacing, revealing a CSpoIISA(2)·SpoIISB(2) heterotetramer. CSpoIISA has a single domain α/ß structure resembling a GAF domain with an extended α-helix at its N terminus. The two CSpoIISA protomers form extensive interactions through an intermolecular four-helix bundle. Each SpoIISB chain is highly extended and lacking tertiary structure. The SpoIISB chains wrap around the CSpoIISA dimer, forming extensive interactions with both CSpoIISA protomers. CD spectroscopy experiments indicate that SpoIISB is a natively disordered protein that adopts structure only in the presence of CSpoIISA, whereas surface plasmon resonance experiments revealed that the CSpoIISA·SpoIISB complex is stable with a dissociation constant in the nanomolar range. The results are interpreted in relation to sequence conservation and mutational data, and possible mechanisms of cell killing by SpoIISA are discussed.


Assuntos
Bacillus subtilis/química , Fatores de Transcrição/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon/fisiologia , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Biol Chem ; 286(27): 24208-18, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21566123

RESUMO

The human C-type lectin-like molecule CLEC5A is a critical macrophage receptor for dengue virus. The binding of dengue virus to CLEC5A triggers signaling through the associated adapter molecule DAP12, stimulating proinflammatory cytokine release. We have crystallized an informative ensemble of CLEC5A structural conformers at 1.9-Å resolution and demonstrate how an on-off extension to a ß-sheet acts as a binary switch regulating the flexibility of the molecule. This structural information together with molecular dynamics simulations suggests a mechanism whereby extracellular events may be transmitted through the membrane and influence DAP12 signaling. We demonstrate that CLEC5A is homodimeric at the cell surface and binds to dengue virus serotypes 1-4. We used blotting experiments, surface analyses, glycan microarray, and docking studies to investigate the ligand binding potential of CLEC5A with particular respect to dengue virus. This study provides a rational foundation for understanding the dengue virus-macrophage interaction and the role of CLEC5A in dengue virus-induced lethal disease.


Assuntos
Vírus da Dengue/metabolismo , Dengue/metabolismo , Lectinas Tipo C , Macrófagos/metabolismo , Multimerização Proteica , Receptores de Superfície Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cristalografia por Raios X , Dengue/virologia , Células HEK293 , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
18.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 431-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505263

RESUMO

Biological macromolecules are polymers and therefore the restraints for macromolecular refinement can be subdivided into two sets: restraints that are applied to atoms that all belong to the same monomer and restraints that are associated with the covalent bonds between monomers. The CCP4 template-restraint library contains three types of data entries defining template restraints: descriptions of monomers and their modifications, both used for intramonomer restraints, and descriptions of links for intermonomer restraints. The library provides generic descriptions of modifications and links for protein, DNA and RNA chains, and for some post-translational modifications including glycosylation. Structure-specific template restraints can be defined in a user's additional restraint library. Here, JLigand, a new CCP4 graphical interface to LibCheck and REFMAC that has been developed to manage the user's library and generate new monomer entries is described, as well as new entries for links and associated modifications.


Assuntos
Bases de Dados de Proteínas , Design de Software , Algoritmos , Aminoácidos/química , Carboidratos/química , Ligantes , Modelos Moleculares
19.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048148

RESUMO

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Assuntos
Computação em Nuvem , Software , Cristalografia por Raios X , Substâncias Macromoleculares/química
20.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 355-67, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21460454

RESUMO

This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Šcan be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, `jelly-body' restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback-Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.


Assuntos
Cristalografia por Raios X/métodos , Software , Anisotropia , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa