Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574673

RESUMO

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Assuntos
Caenorhabditis elegans , Glicoproteínas , Hormônios , Receptores Acoplados a Proteínas G , Animais , Sequência de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/genética
2.
Proc Natl Acad Sci U S A ; 116(35): 17251-17260, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395737

RESUMO

Microsomal triglyceride transfer protein (MTP) plays an essential role in lipid metabolism, especially in the biogenesis of very low-density lipoproteins and chylomicrons via the transfer of neutral lipids and the assembly of apoB-containing lipoproteins. Our understanding of the molecular mechanisms of MTP has been hindered by a lack of structural information of this heterodimeric complex comprising an MTPα subunit and a protein disulfide isomerase (PDI) ß-subunit. The structure of MTP presented here gives important insights into the potential mechanisms of action of this essential lipid transfer molecule, structure-based rationale for previously reported disease-causing mutations, and a means for rational drug design against cardiovascular disease and obesity. In contrast to the previously reported structure of lipovitellin, which has a funnel-like lipid-binding cavity, the lipid-binding site is encompassed in a ß-sandwich formed by 2 ß-sheets from the C-terminal domain of MTPα. The lipid-binding cavity of MTPα is large enough to accommodate a single lipid. PDI independently has a major role in oxidative protein folding in the endoplasmic reticulum. Comparison of the mechanism of MTPα binding by PDI with previously published structures gives insights into large protein substrate binding by PDI and suggests that the previous structures of human PDI represent the "substrate-bound" and "free" states rather than differences arising from redox state.


Assuntos
Proteínas de Transporte/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação Proteica em Folha beta
3.
J Biol Chem ; 290(51): 30291-305, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26491011

RESUMO

Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is mediated by a pair of O-GlcNAc-transferase and O-GlcNAc hydrolase enzymes operating on a large number of substrate proteins. Protein O-GlcNAcylation is responsive to glucose and flux through the hexosamine biosynthetic pathway. Thus, a close relationship is thought to exist between the level of O-GlcNAc proteins within and the general metabolic state of the cell. Although isolated apparent orthologues of these enzymes are present in bacterial genomes, their biological functions remain largely unexplored. It is possible that understanding the function of these proteins will allow development of reductionist models to uncover the principles of O-GlcNAc signaling. Here, we identify orthologues of both O-GlcNAc cycling enzymes in the genome of the thermophilic eubacterium Thermobaculum terrenum. The O-GlcNAcase and O-GlcNAc-transferase are co-expressed and, like their mammalian orthologues, localize to the cytoplasm. The O-GlcNAcase orthologue possesses activity against O-GlcNAc proteins and model substrates. We describe crystal structures of both enzymes, including an O-GlcNAcase·peptide complex, showing conservation of active sites with the human orthologues. Although in vitro activity of the O-GlcNAc-transferase could not be detected, treatment of T. terrenum with an O-GlcNAc-transferase inhibitor led to inhibition of growth. T. terrenum may be the first example of a bacterium possessing a functional O-GlcNAc system.


Assuntos
Acetilglucosamina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Humanos
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2430-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195756

RESUMO

The presence of pseudo-symmetry in a macromolecular crystal and its interplay with twinning may lead to an incorrect space-group (SG) assignment. Moreover, if the pseudo-symmetry is very close to an exact crystallographic symmetry, the structure can be solved and partially refined in the wrong SG. Typically, in such incorrectly determined structures all or some of the pseudo-symmetry operations are, in effect, taken for crystallographic symmetry operations and vice versa. A mistake only becomes apparent when the R(free) ceases to decrease below 0.39 and further model rebuilding and refinement cannot improve the refinement statistics. If pseudo-symmetry includes pseudo-translation, the uncertainty in SG assignment may be associated with an incorrect choice of origin, as demonstrated by the series of examples provided here. The program Zanuda presented in this article was developed for the automation of SG validation. Zanuda runs a series of refinements in SGs compatible with the observed unit-cell parameters and chooses the model with the highest symmetry SG from a subset of models that have the best refinement statistics.


Assuntos
Substâncias Macromoleculares/química , Automação , Humanos , Lectinas Tipo C/química , Estrutura Molecular , Conformação Proteica , Receptores de Superfície Celular/química
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1680-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914979

RESUMO

Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.


Assuntos
Proteínas Musculares/química , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Humanos , Proteínas Musculares/genética , Reação em Cadeia da Polimerase , Conformação Proteica
6.
Biochim Biophys Acta ; 1824(3): 422-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22197591

RESUMO

D-Serine dehydratase from Escherichia coli is a member of the ß-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97Å-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55Å resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the ß-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Hidroliases/química , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo
7.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 706-720, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428847

RESUMO

Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.


Assuntos
Muramidase , Peptidoglicano , Muramidase/química , Sequência de Aminoácidos , Modelos Moleculares , Glicosídeo Hidrolases/química , Parede Celular
8.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
9.
J Biol Chem ; 286(8): 6808-19, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21147767

RESUMO

Spore formation in Bacillus subtilis begins with an asymmetric cell division, following which differential gene expression is established by alternative compartment-specific RNA polymerase σ factors. The spoIISAB operon of B. subtilis was identified as a locus whose mutation leads to increased activity of the first sporulation-specific sigma factor, σ(F). Inappropriate spoIISA expression causes lysis of vegetatively growing B. subtilis cells and Escherichia coli cells when expressed heterologously, effects that are countered by co-expression of spoIISB, identifying SpoIISA-SpoIISB as a toxin-antitoxin system. SpoIISA has three putative membrane-spanning segments and a cytoplasmic domain. Here, the crystal structure of a cytoplasmic fragment of SpoIISA (CSpoIISA) in complex with SpoIISB has been determined by selenomethionine-multiwavelength anomalous dispersion phasing to 2.5 Å spacing, revealing a CSpoIISA(2)·SpoIISB(2) heterotetramer. CSpoIISA has a single domain α/ß structure resembling a GAF domain with an extended α-helix at its N terminus. The two CSpoIISA protomers form extensive interactions through an intermolecular four-helix bundle. Each SpoIISB chain is highly extended and lacking tertiary structure. The SpoIISB chains wrap around the CSpoIISA dimer, forming extensive interactions with both CSpoIISA protomers. CD spectroscopy experiments indicate that SpoIISB is a natively disordered protein that adopts structure only in the presence of CSpoIISA, whereas surface plasmon resonance experiments revealed that the CSpoIISA·SpoIISB complex is stable with a dissociation constant in the nanomolar range. The results are interpreted in relation to sequence conservation and mutational data, and possible mechanisms of cell killing by SpoIISA are discussed.


Assuntos
Bacillus subtilis/química , Fatores de Transcrição/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon/fisiologia , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 286(27): 24208-18, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21566123

RESUMO

The human C-type lectin-like molecule CLEC5A is a critical macrophage receptor for dengue virus. The binding of dengue virus to CLEC5A triggers signaling through the associated adapter molecule DAP12, stimulating proinflammatory cytokine release. We have crystallized an informative ensemble of CLEC5A structural conformers at 1.9-Å resolution and demonstrate how an on-off extension to a ß-sheet acts as a binary switch regulating the flexibility of the molecule. This structural information together with molecular dynamics simulations suggests a mechanism whereby extracellular events may be transmitted through the membrane and influence DAP12 signaling. We demonstrate that CLEC5A is homodimeric at the cell surface and binds to dengue virus serotypes 1-4. We used blotting experiments, surface analyses, glycan microarray, and docking studies to investigate the ligand binding potential of CLEC5A with particular respect to dengue virus. This study provides a rational foundation for understanding the dengue virus-macrophage interaction and the role of CLEC5A in dengue virus-induced lethal disease.


Assuntos
Vírus da Dengue/metabolismo , Dengue/metabolismo , Lectinas Tipo C , Macrófagos/metabolismo , Multimerização Proteica , Receptores de Superfície Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cristalografia por Raios X , Dengue/virologia , Células HEK293 , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
11.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 431-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505263

RESUMO

Biological macromolecules are polymers and therefore the restraints for macromolecular refinement can be subdivided into two sets: restraints that are applied to atoms that all belong to the same monomer and restraints that are associated with the covalent bonds between monomers. The CCP4 template-restraint library contains three types of data entries defining template restraints: descriptions of monomers and their modifications, both used for intramonomer restraints, and descriptions of links for intermonomer restraints. The library provides generic descriptions of modifications and links for protein, DNA and RNA chains, and for some post-translational modifications including glycosylation. Structure-specific template restraints can be defined in a user's additional restraint library. Here, JLigand, a new CCP4 graphical interface to LibCheck and REFMAC that has been developed to manage the user's library and generate new monomer entries is described, as well as new entries for links and associated modifications.


Assuntos
Bases de Dados de Proteínas , Design de Software , Algoritmos , Aminoácidos/química , Carboidratos/química , Ligantes , Modelos Moleculares
12.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048148

RESUMO

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Assuntos
Computação em Nuvem , Software , Cristalografia por Raios X , Substâncias Macromoleculares/química
13.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 355-67, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21460454

RESUMO

This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Šcan be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, `jelly-body' restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback-Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.


Assuntos
Cristalografia por Raios X/métodos , Software , Anisotropia , Funções Verossimilhança
14.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1564-1578, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866612

RESUMO

ß-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some ß-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain ß-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain ß-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective ß-galactosidase modification for industrial purposes in the future.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/metabolismo , beta-Galactosidase/metabolismo , Proteínas de Bactérias/química , Bifidobacterium bifidum/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Galactose/metabolismo , Hidrólise , Lactose/metabolismo , Especificidade por Substrato , beta-Galactosidase/química
15.
BMC Struct Biol ; 9: 32, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19454024

RESUMO

BACKGROUND: Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. RESULTS: We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. CONCLUSION: It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.


Assuntos
Proteínas Arqueais/química , Methanobacteriaceae/metabolismo , RNA/química , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas/química , RNA/metabolismo , Alinhamento de Sequência
16.
Extremophiles ; 13(1): 179-90, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19039518

RESUMO

Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The L: -2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a beta-sheet bundle surrounded by alpha-helices and an alpha-helical sub-domain. This fold is similar to previously solved mesophilic L: -haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor L: -lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60 degrees C and a half-life of over 1 h at 70 degrees C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO.


Assuntos
Hidrolases/metabolismo , Sulfolobus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Temperatura Alta , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
17.
Nucleic Acids Res ; 35(19): 6451-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17881379

RESUMO

Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex. The protein's assembly thus maintains such an asymmetric state in the absence of DNA and nucleotide cofactors, allowing consideration of the E1 helicase action as the propagation of a conformational wave around the protein ring. The data imply that the wave's propagation within the AAA+ domains is not necessarily coupled with a strictly sequential hydrolysis of ATP. Since a single ATP hydrolysis event would affect the whole hexamer, such events may simply serve to rectify the direction of the wave's motion.


Assuntos
DNA Helicases/química , Proteínas de Ligação a DNA/química , Proteínas Virais/química , Trifosfato de Adenosina/química , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Modelos Moleculares , Nucleotídeos/química , Estrutura Terciária de Proteína
18.
J Mol Biol ; 431(3): 463-478, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412706

RESUMO

Modification of proteins by the ubiquitin-like protein, UFM1, requires activation of UFM1 by the E1-activating enzyme, UBA5. In humans, UBA5 possesses two isoforms, each comprising an adenylation domain, but only one containing an N-terminal extension. Currently, the role of the N-terminal extension in UFM1 activation is not clear. Here we provide structural and biochemical data on UBA5 N-terminal extension to understand its contribution to UFM1 activation. The crystal structures of the UBA5 long isoform bound to ATP with and without UFM1 show that the N-terminus not only is directly involved in ATP binding but also affects how the adenylation domain interacts with ATP. Surprisingly, in the presence of the N-terminus, UBA5 no longer retains the 1:2 ratio of ATP to UBA5, but rather this becomes a 1:1 ratio. Accordingly, the N-terminus significantly increases the affinity of ATP to UBA5. Finally, the N-terminus, although not directly involved in the E2 binding, stimulates transfer of UFM1 from UBA5 to the E2, UFC1.


Assuntos
Ativação Enzimática/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Humanos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
19.
J Mol Biol ; 365(3): 825-34, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17097673

RESUMO

Production of Bacillus cereus and Bacillus anthracis toxins is controlled by a number of transcriptional regulators. Here we report the crystal structure of B. cereus HlyIIR, a regulator of the gene encoding the pore-forming toxin hemolysin II. We show that HlyIIR forms a tight dimer with a fold and overall architecture similar to the TetR family of repressors. A remarkable feature of the structure is a large internal cavity with a volume of 550 A(3) suggesting that the activity of HlyIIR is modulated by binding of a ligand, which triggers the toxin production. Virtual ligand library screening shows that this pocket can accommodate compounds with molecular masses of up to 400-500 Da. Based on structural data and previous biochemical evidence, we propose a model for HlyIIR interaction with the DNA.


Assuntos
Bacillus cereus/química , Proteínas de Bactérias/química , Toxinas Bacterianas/genética , Proteínas Hemolisinas/genética , Transcrição Gênica , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Dimerização , Ligantes , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína
20.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 32-44, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045383

RESUMO

Bacterial phosphoinositide-specific phospholipases C (PI-PLCs) are the smallest members of the PI-PLC family, which includes much larger mammalian enzymes responsible for signal transduction as well as enzymes from protozoan parasites, yeast and plants. Eukaryotic PI-PLCs have calcium in the active site, but this is absent in the known structures of Gram-positive bacteria, where its role is instead played by arginine. In addition to their use in a number of industrial applications, the bacterial enzymes attract special interest because they can serve as convenient models of the catalytic domains of eukaryotic enzymes for in vitro activity studies. Here, the structure of a PI-PLC from Pseudomonas sp. 62186 is reported, the first from a Gram-negative bacterium and the first of a native bacterial PI-PLC with calcium present in the active site. Solution of the structure posed particular problems owing to the low sequence identity of available homologous structures. Its dependence on calcium for catalysis makes this enzyme a better model for studies of the mammalian PI-PLCs than the previously used calcium-independent bacterial PI-PLCs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa