Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Toxicol Environ Health A ; 87(8): 325-341, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38314584

RESUMO

During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m3, 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity.


Assuntos
Exposição por Inalação , Pulmão , Cimento de Policarboxilato , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Pulmão/metabolismo , Líquido da Lavagem Broncoalveolar
2.
J Toxicol Environ Health A ; 87(13): 541-559, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38682597

RESUMO

Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.


Assuntos
Estresse Oxidativo , Cimento de Policarboxilato , Impressão Tridimensional , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Miocárdio/metabolismo , Poluentes Atmosféricos/toxicidade , Coração/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo
3.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466202

RESUMO

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Material Particulado/toxicidade , Biomarcadores , Exposição por Inalação/efeitos adversos
4.
J Occup Environ Hyg ; 21(7): 504-514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924715

RESUMO

Ideally, measuring exposures to volatile organic compounds should allow for modifying sampling duration without loss in sensitivity. Traditional sorbent-based sampling can vary sampling duration, but sensitivity may be affected when capturing shorter tasks. Diaphragm and capillary flow controllers allow for a range of flow rates and sampling durations for air sampling with evacuated canisters. The goal of this study was to evaluate the extent to which commercialized capillary flow controllers satisfy the bias (±10%) and accuracy (±25%) criteria for air sampling methods as established by the National Institute for Occupational Safety and Health (NIOSH) using the framework of ASTM D6246 Standard Practice for Evaluating the Performance of Diffusive Samplers to compare their performance with diaphragm flow controllers in a long-term field study. Phase 1 consisted of a series of laboratory tests to evaluate capillary flow controller flow rates with respect to variations in temperature (-15-24 °C). The results demonstrated a slight increase in flow rate with lower temperatures. In Phase 2, the capillary flow controller was evaluated utilizing a matrix of parameters, including time-weighted average concentration, peak concentration (50-100× base concentration), air velocity across the sampler inlet (0.41-0.5 m/s), relative humidity (20-80%), and temperature (10-32 °C). Comparison of challenge concentrations with reference concentrations revealed the aggregate bias and overall accuracy for four tested compounds to be within the range of criteria for both NIOSH and ASTM standards. Additionally, capillary flow controllers displayed lower variability in flow rate and measured concentration (RSD: 2.4% and 4.3%, respectively) when compared with diaphragm flow controllers (RSD: 6.9% and 7.2%, respectively) for 24-hr laboratory tests. Phase 3 involved further testing of flow rate variability for both diaphragm and capillary flow controllers in a field study. The capillary flow controller displayed a lower level of variability (RSD: 5.2%) than the diaphragm flow controller (RSD: 8.0%) with respect to flow rate, while allowing for longer durations of sampling.


Assuntos
Poluentes Ocupacionais do Ar , Monitoramento Ambiental , Exposição Ocupacional , Compostos Orgânicos Voláteis , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/análise , Poluentes Ocupacionais do Ar/análise , National Institute for Occupational Safety and Health, U.S. , Temperatura , Humanos , Estados Unidos
5.
J Toxicol Environ Health A ; 86(1): 1-22, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36444639

RESUMO

The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.


Assuntos
Monitoramento Ambiental , Exposição Ocupacional , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Titânio , Tamanho da Partícula , Aerossóis
6.
J Occup Environ Hyg ; 19(4): 197-209, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156905

RESUMO

E-cigarettes are battery-operated devices that heat a liquid mixture to make an aerosol that is inhaled, or vaped, by the user. Vape shops are retail environments designed to fulfill customer demand for diverse e-liquid flavors and hardware options, which create unique worker exposure concerns. To characterize exposures to vape shop workers, especially to flavoring chemicals associated with known respiratory toxicity, this study recruited vape shops from the San Francisco Bay Area. In six shops, we measured air concentrations for volatile organic compounds, formaldehyde, flavoring chemicals, and nicotine in personal and/or area samples; analyzed components of e-liquids vaped during field visits; and assessed metals on surface wipe samples. Interviews and observations were conducted over the course of a workday in the same six shops and interviews were performed in an additional six where sampling was not conducted. Detections of the alpha-diketone butter flavoring chemicals diacetyl and/or 2,3-pentanedione were common: in the headspace of purchased e-liquids (18 of 26 samples), in personal air samples (5 of 16), and in area air samples (2 of 6 shops). Two exceedances of recommended exposure limits for 2,3-pentanedione (a short-term exposure limit and an 8-hr time-weighted average) were measured in personal air samples. Other compounds detected in the area and personal air samples included substitutes for diacetyl and 2,3-pentanedione (acetoin and 2,3-hexanedione) and compounds that may be contaminants or impurities. Furthermore, a large variety (82) of other flavoring chemicals were detected in area air samples. None of the 12 shops interviewed had a health and safety program. Six shops reported no use of any personal protective equipment (PPE) (e.g., gloves, chemical resistant aprons, eye protection) and the others stated occasional use; however, no PPE use was observed during any field investigation day. Recommendations were provided to shops that included making improvements to ventilation, hygiene, use of personal protective equipment, and, if possible, avoidance of products containing the alpha-diketone flavoring chemicals. Future research is needed to evaluate the long-term health risks among workers in the vape shop retail industry and for e-cigarette use generally. Specific areas include further characterizing e-liquid constituents and emissions, evaluating ingredient health risks, evaluating the contributions of different routes of exposure (dermal, inhalation, and ingestion), and determining effective exposure mitigation measures.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , California , Diacetil , Humanos , Cetonas , Níveis Máximos Permitidos
7.
Artigo em Inglês | MEDLINE | ID: mdl-35982992

RESUMO

Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces.

8.
Inhal Toxicol ; 32(11-12): 403-418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33076715

RESUMO

BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.


Assuntos
Resinas Acrílicas/toxicidade , Poluição do Ar em Ambientes Fechados/efeitos adversos , Butadienos/toxicidade , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Poliestirenos/toxicidade , Impressão Tridimensional , Sistema Respiratório/efeitos dos fármacos , Compostos Orgânicos Voláteis/toxicidade , Resinas Acrílicas/farmacocinética , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Animais , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Líquido da Lavagem Broncoalveolar/química , Butadienos/farmacocinética , Citocinas/sangue , Masculino , Microscopia Eletrônica de Varredura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/farmacocinética , Poliestirenos/farmacocinética , Ratos Sprague-Dawley , Sistema Respiratório/metabolismo , Sistema Respiratório/ultraestrutura , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacocinética
9.
Am J Ind Med ; 63(5): 417-428, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154609

RESUMO

BACKGROUND: Asthma-related health outcomes are known to be associated with indoor moisture and renovations. The objective of this study was to estimate the frequency of these indoor environmental quality (IEQ) factors in healthcare facilities and their association with asthma-related outcomes among workers. METHODS: New York City healthcare workers (n = 2030) were surveyed regarding asthma-related symptoms, and moisture and renovation factors at work and at home during the last 12 months. Questions for workplace moisture addressed water damage (WD), mold growth (MG), and mold odor (MO), while for renovations they addressed painting (P), floor renovations (FR), and wall renovations (WR). Regression models were fit to examine associations between work and home IEQ factors and multiple asthma-related outcomes. RESULTS: Reports of any moisture (n = 728, 36%) and renovations (n = 1412, 70%) at work were common. Workplace risk factors for asthma-related outcomes included the moisture categories of WD by itself, WD with MO (without MG), and WD with MG and MO, and the renovation category with the three factors P, FR, and WR. Reports of home IEQ factors were less frequent and less likely to be associated with health outcomes. Data analyses suggested that MG and/or MO at work and at home had a synergistic effect on the additive scale with a symptom-based algorithm for bronchial hyperresponsiveness. CONCLUSIONS: The current study determined that moisture and renovation factors are common in healthcare facilities, potentially putting workers at risk for asthma-related outcomes. More research is needed to confirm these results, especially prospective studies.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Asma Ocupacional/etiologia , Pessoal de Saúde/estatística & dados numéricos , Exposição Ocupacional/análise , Local de Trabalho/estatística & dados numéricos , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Feminino , Arquitetura Hospitalar/estatística & dados numéricos , Humanos , Umidade/efeitos adversos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Exposição Ocupacional/efeitos adversos , Análise de Regressão , Fatores de Risco
10.
Inhal Toxicol ; 31(13-14): 432-445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31874579

RESUMO

Objective: Fused filament fabrication "3-dimensional (3-D)" printing has expanded beyond the workplace to 3-D printers and pens for use by children as toys to create objects.Materials and methods: Emissions from two brands of toy 3-D pens and one brand of toy 3-D printer were characterized in a 0.6 m3 chamber (particle number, size, elemental composition; concentrations of individual and total volatile organic compounds (TVOC)). The effects of print parameters on these emission metrics were evaluated using mixed-effects models. Emissions data were used to model particle lung deposition and TVOC exposure potential.Results: Geometric mean particle yields (106-1010 particles/g printed) and sizes (30-300 nm) and TVOC yields (

Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Jogos e Brinquedos , Impressão Tridimensional , Compostos Orgânicos Voláteis/análise , Criança , Humanos , Tamanho da Partícula
11.
Am J Ind Med ; 62(11): 927-937, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31461179

RESUMO

BACKGROUND: A cluster of severe lung disease occurred at a manufacturing facility making industrial machines. We aimed to describe disease features and workplace exposures. METHODS: Clinical, functional, radiologic, and histopathologic features were characterized. Airborne concentrations of thoracic aerosol, metalworking fluid, endotoxin, metals, and volatile organic compounds were measured. Facility airflow was assessed using tracer gas. Process fluids were examined using culture, polymerase chain reaction, and 16S ribosomal RNA sequencing. RESULTS: Five previously healthy male never-smokers, ages 27 to 50, developed chest symptoms from 1995 to 2012 while working in the facility's production areas. Patients had an insidious onset of cough, wheeze, and exertional dyspnea; airflow obstruction (mean FEV1 = 44% predicted) and reduced diffusing capacity (mean = 53% predicted); and radiologic centrilobular emphysema. Lung tissue demonstrated a unique pattern of bronchiolitis and alveolar ductitis with B-cell follicles lacking germinal centers, and significant emphysema for never-smokers. All had chronic dyspnea, three had a progressive functional decline, and one underwent lung transplantation. Patients reported no unusual nonoccupational exposures. No cases were identified among nonproduction workers or in the community. Endotoxin concentrations were elevated in two air samples; otherwise, exposures were below occupational limits. Air flowed from areas where machining occurred to other production areas. Metalworking fluid primarily grew Pseudomonas pseudoalcaligenes and lacked mycobacterial DNA, but 16S analysis revealed more complex bacterial communities. CONCLUSION: This cluster indicates a previously unrecognized occupational lung disease of yet uncertain etiology that should be considered in manufacturing workers (particularly never-smokers) with airflow obstruction and centrilobular emphysema. Investigation of additional cases in other settings could clarify the cause and guide prevention.


Assuntos
Bronquiolite/etiologia , Pulmão/patologia , Indústria Manufatureira , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Enfisema Pulmonar/etiologia , Adulto , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Endotoxinas/análise , Humanos , Masculino , Instalações Industriais e de Manufatura , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Alvéolos Pulmonares/patologia , Adulto Jovem
12.
Anal Bioanal Chem ; 410(23): 5951-5960, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29974153

RESUMO

The use of electronic nicotine delivery systems continues to gain popularity, and there is concern for potential health risks from inhalation of aerosol and vapor produced by these devices. An analytical method was developed that provided quantitative and qualitative chemical information for characterizing the volatile constituents of bulk electronic cigarette liquids (e-liquids) using a static headspace technique. Volatile organic compounds (VOCs) were screened from a convenience sample of 146 e-liquids by equilibrating 1 g of each e-liquid in amber vials for 24 h at room temperature. Headspace was transferred to an evacuated canister and quantitatively analyzed for 20 VOCs as well as tentatively identified compounds using a preconcentrator/gas chromatography/mass spectrometer system. The e-liquids were classified into flavor categories including brown, fruit, hybrid dairy, menthol, mint, none, tobacco, and other. 2,3-Butanedione was found at the highest concentration in brown flavor types, but was also found in fruit, hybrid dairy, and menthol flavor types. Benzene was observed at concentrations that are concerning given the carcinogenicity of this compound (max 1.6 ppm in a fruit flavor type). The proposed headspace analysis technique coupled with partition coefficients allows for a rapid and sensitive prediction of the volatile content in the liquid. The technique does not require onerous sample preparation, dilution with organic solvents, or sampling at elevated temperatures. Static headspace screening of e-liquids allows for the identification of volatile chemical constituents which is critical for identifying and controlling emission of potentially hazardous constituents in the workplace.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Benzeno/análise , Diacetil/análise , Mentol/análise , Solventes
13.
Indoor Air ; 28(6): 840-851, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101413

RESUMO

Fused deposition modeling (FDM™) 3-dimensional printing uses polymer filament to build objects. Some polymer filaments are formulated with additives, though it is unknown if they are released during printing. Three commercially available filaments that contained carbon nanotubes (CNTs) were printed with a desktop FDM™ 3-D printer in a chamber while monitoring total particle number concentration and size distribution. Airborne particles were collected on filters and analyzed using electron microscopy. Carbonyl compounds were identified by mass spectrometry. The elemental carbon content of the bulk CNT-containing filaments was 1.5 to 5.2 wt%. CNT-containing filaments released up to 1010 ultrafine (d < 100 nm) particles/g printed and 106 to 108 respirable (d ~0.5 to 2 µm) particles/g printed. From microscopy, 1% of the emitted respirable polymer particles contained visible CNTs. Carbonyl emissions were observed above the limit of detection (LOD) but were below the limit of quantitation (LOQ). Modeling indicated that, for all filaments, the average proportional lung deposition of CNT-containing polymer particles was 6.5%, 5.7%, and 7.2% for the head airways, tracheobronchiolar, and pulmonary regions, respectively. If CNT-containing polymer particles are hazardous, it would be prudent to control emissions during use of these filaments.


Assuntos
Imageamento Tridimensional , Nanotubos de Carbono , Polímeros/química , Monitoramento Ambiental/métodos , Exposição por Inalação , Material Particulado/análise
14.
J Occup Environ Hyg ; 15(4): 351-360, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333991

RESUMO

The objective of this present study was to evaluate the performance of a portable gas chromatograph-photoionization detector (GC-PID), under various test conditions to determine if it could be used in occupational settings. A mixture of 7 volatile organic compounds (VOCs)-acetone, ethylbenzene, methyl isobutyl ketone, toluene, m-xylene, p-xylene, and o-xylene-was selected because its components are commonly present in paint manufacturing industries. A full-factorial combination of 4 concentration levels (exposure scenarios) of VOC mixtures, 3 different temperatures (25°C, 30°C, and 35°C), and 3 relative humidities (RHs; 25%, 50%, and 75%) was conducted in a full-size controlled environmental chamber. Three repetitions were conducted for each test condition allowing for estimation of accuracy. Time-weighted average exposure data were collected using solid sorbent tubes (Anasorb 747, SKC Inc.) as the reference sampling medium. Calibration curves of Frog-4000 using the dry gases showed R2 > 0.99 for all analytes except for toluene (R2 = 0.97). Frog-4000 estimates within a test condition showed good consistency for the performance of repeated measurement. However, there was ∼41-64% reduction in the analysis of polar acetone with 75% RH relative to collection at 25% RH. Although Frog-4000 results correlated well with solid sorbent tubes (r = 0.808-0.993, except for toluene) most of the combinations regardless of analyte did not meet the <25% accuracy criterion recommended by NIOSH. The effect of chromatographic co-elution can be seen with m, p-xylene when the results are compared to the sorbent tube sampling technique with GC-flame ionization detector. The results indicated an effect of humidity on the quantification of the polar compounds that might be attributed to the pre-concentrator placed in the selected GC-PID. Further investigation may resolve the humidity effect on sorbent trap with micro GC pre-concentrator when water vapor is present. Although this instrument does not fulfill the accuracy criterion specified in the NIOSH technical report No. 2012-162, it can be used as a screening tool for range finding monitoring with dry gases calibration in the occupational setting rather than compliance monitoring.


Assuntos
Poluentes Ocupacionais do Ar/análise , Cromatografia Gasosa/instrumentação , Compostos Orgânicos Voláteis/análise , Umidade , Temperatura
15.
J Occup Environ Hyg ; 15(4): 341-350, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29283318

RESUMO

This experimental study aimed to evaluate airborne particulates and volatile organic compounds (VOCs) from surgical smoke when a local exhaust ventilation (LEV) system is in place. Surgical smoke was generated from human tissue in an unoccupied operating room using an electrocautery surgical device for 15 min with 3 different test settings: (1) without LEV control; (2) control with a wall irrigation suction unit with an in-line ultra-low penetration air filter; and (3) control with a smoke evacuation system. Flow rate of LEVs was approximately 35 L/min and suction was maintained within 5 cm of electrocautery interaction site. A total of 6 experiments were conducted. Particle number and mass concentrations were measured using direct reading instruments including a condensation particle counter (CPC), a light-scattering laser photometer (DustTrak DRX), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), and a viable particle counter. Selected VOCs were collected using evacuated canisters using grab, personal and area sampling techniques. The largest average particle and VOCs concentrations were found in the absence of LEV control followed by LEV controls. Average ratios of LEV controls to without LEV control ranged 0.24-0.33 (CPC), 0.28-0.39 (SMPS), 0.14-0.31 (DustTrak DRX), and 0.26-0.55 (APS). Ethanol and isopropyl alcohol were dominant in the canister samples. Acetaldehyde, acetone, acetonitrile, benzene, hexane, styrene, and toluene were detected but at lower concentrations (<500 µg/m3) and concentrations of the VOCs were much less than the National Institute for Occupational Safety and Health recommended exposure limit values. Utilization of the LEVs for surgical smoke control can significantly reduce but not completely eliminate airborne particles and VOCs.


Assuntos
Eletrocoagulação , Material Particulado/análise , Fumaça/prevenção & controle , Ventilação/métodos , Compostos Orgânicos Voláteis/análise , Poluentes Ocupacionais do Ar/análise , Humanos , Exposição Ocupacional/prevenção & controle , Fumaça/análise
16.
Environ Health ; 16(1): 42, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449666

RESUMO

BACKGROUND: We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. METHODS: We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. RESULTS: We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. CONCLUSION: We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.


Assuntos
Poluentes Atmosféricos/análise , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Aerossóis , Elementos Químicos , Mentol , Nanopartículas/análise , Nicotiana
17.
J Occup Environ Hyg ; 14(5): 343-348, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27792470

RESUMO

Gas chromatography/mass spectrometry (GC/MS) operated in selected ion monitoring mode was used to enhance the sensitivity of OSHA Methods 1013/1016 for measuring diacetyl and 2,3-pentanedione in air samples. The original methods use flame ionization detection which cannot achieve the required sensitivity to quantify samples at or below the NIOSH recommended exposure limits (REL: 5 ppb for diacetyl and 9.3 ppb for 2,3-pentanedione) when sampling for both diacetyl and 2,3-pentanedione. OSHA Method 1012 was developed to measure diacetyl at lower levels but requires an electron capture detector, and a sample preparation time of 36 hours. Using GC/MS allows detection of these two alpha-diketones at lower levels than OSHA Method 1012 for diacetyl and OSHA Method 1016 for 2,3-pentanedione. Acetoin and 2,3-hexanedione may also be measured using this technique. Method quantification limits were 1.1 ppb for diacetyl (22% of the REL), 1.1 ppb for 2,3-pentanedione (12% of the REL), 1.1 ppb for 2,3-hexanedione, and 2.1 ppb for acetoin. Average extraction efficiencies above the limit of quantitation were 100% for diacetyl, 92% for 2,3-pentanedione, 89% for 2,3-hexanedione, and 87% for acetoin. Mass spectrometry with OSHA Methods 1013/1016 could be used by analytical laboratories to provide more sensitive and accurate measures of exposure to diacetyl and 2,3-pentanedione.


Assuntos
Diacetil/análise , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Pentanonas/análise , Diacetil/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , National Institute for Occupational Safety and Health, U.S. , Pentanonas/química , Estados Unidos , United States Occupational Safety and Health Administration
18.
J Occup Environ Hyg ; 14(7): 540-550, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28440728

RESUMO

Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h-1) compared to the laser printers (5782-7735 µg h-1). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Impressão Tridimensional , Compostos Orgânicos Voláteis/análise , Acrilonitrila/análise , Aldeídos/análise , Butadienos , Cromo/análise , Monitoramento Ambiental/métodos , Cetonas/análise , Poliésteres , Estireno/análise
19.
J Toxicol Environ Health A ; 79(11): 453-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196745

RESUMO

Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Impressão Tridimensional , Tamanho da Partícula , Ventilação
20.
J Occup Environ Hyg ; 13(6): 442-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26853932

RESUMO

Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to detect fungal secondary metabolites. Detection of verrucarol, the hydrolysis product of Stachybotrys chartarum macrocyclic trichothecene (MCT), was confounded by matrix effects associated with heterogeneous indoor environmental samples. In this study, we examined the role of dust matrix effects associated with GC-MS/MS to better quantify verrucarol in dust as a measure of total MCT. The efficiency of the internal standard (ISTD, 1,12-dodecanediol), and application of a matrix-matched standard correction method in measuring MCT in floor dust of water-damaged buildings was additionally examined. Compared to verrucarol, ISTD had substantially higher matrix effects in the dust extracts. The results of the ISTD evaluation showed that without ISTD adjustment, there was a 280% ion enhancement in the dust extracts compared to neat solvent. The recovery of verrucarol was 94% when the matrix-matched standard curve without the ISTD was used. Using traditional calibration curves with ISTD adjustment, none of the 21 dust samples collected from water damaged buildings were detectable. In contrast, when the matrix-matched calibration curves without ISTD adjustment were used, 38% of samples were detectable. The study results suggest that floor dust of water-damaged buildings may contain MCT. However, the measured levels of MCT in dust using the GC-MS/MS method could be significantly under- or overestimated, depending on the matrix effects, the inappropriate ISTD, or combination of the two. Our study further shows that the routine application of matrix-matched calibration may prove useful in obtaining accurate measurements of MCT in dust derived from damp indoor environments, while no isotopically labeled verrucarol is available.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Materiais de Construção/análise , Poeira/análise , Micotoxinas/análise , Ácidos Polimetacrílicos/análise , Stachybotrys/isolamento & purificação , Tricotecenos/análise , Microbiologia do Ar , Cromatografia Gasosa-Espectrometria de Massas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa