Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 36(17): 4568-4575, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32437523

RESUMO

MOTIVATION: Studies on structural variants (SVs) are expanding rapidly. As a result, and thanks to third generation sequencing technologies, the number of discovered SVs is increasing, especially in the human genome. At the same time, for several applications such as clinical diagnoses, it is important to genotype newly sequenced individuals on well-defined and characterized SVs. Whereas several SV genotypers have been developed for short read data, there is a lack of such dedicated tool to assess whether known SVs are present or not in a new long read sequenced sample, such as the one produced by Pacific Biosciences or Oxford Nanopore Technologies. RESULTS: We present a novel method to genotype known SVs from long read sequencing data. The method is based on the generation of a set of representative allele sequences that represent the two alleles of each structural variant. Long reads are aligned to these allele sequences. Alignments are then analyzed and filtered out to keep only informative ones, to quantify and estimate the presence of each SV allele and the allele frequencies. We provide an implementation of the method, SVJedi, to genotype SVs with long reads. The tool has been applied to both simulated and real human datasets and achieves high genotyping accuracy. We show that SVJedi obtains better performances than other existing long read genotyping tools and we also demonstrate that SV genotyping is considerably improved with SVJedi compared to other approaches, namely SV discovery and short read SV genotyping approaches. AVAILABILITY AND IMPLEMENTATION: https://github.com/llecompte/SVJedi.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Humano , Software , Variação Estrutural do Genoma , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
2.
Nucleic Acids Res ; 47(1): e2, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30260405

RESUMO

Long-read sequencing currently provides sequences of several thousand base pairs. It is therefore possible to obtain complete transcripts, offering an unprecedented vision of the cellular transcriptome. However the literature lacks tools for de novo clustering of such data, in particular for Oxford Nanopore Technologies reads, because of the inherent high error rate compared to short reads. Our goal is to process reads from whole transcriptome sequencing data accurately and without a reference genome in order to reliably group reads coming from the same gene. This de novo approach is therefore particularly suitable for non-model species, but can also serve as a useful pre-processing step to improve read mapping. Our contribution both proposes a new algorithm adapted to clustering of reads by gene and a practical and free access tool that allows to scale the complete processing of eukaryotic transcriptomes. We sequenced a mouse RNA sample using the MinION device. This dataset is used to compare our solution to other algorithms used in the context of biological clustering. We demonstrate that it is the best approach for transcriptomics long reads. When a reference is available to enable mapping, we show that it stands as an alternative method that predicts complementary clusters.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Animais , Genoma/genética , Camundongos , RNA/genética , Análise de Sequência de DNA
3.
Nat Commun ; 14(1): 3698, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349318

RESUMO

Concurrent chemoradiotherapy (CRT) with blockade of the PD-1 pathway may enhance immune-mediated tumor control through increased phagocytosis, cell death, and antigen presentation. The NiCOL phase 1 trial (NCT03298893) is designed to determine the safety/tolerance profile and the recommended phase-II dose of nivolumab with and following concurrent CRT in 16 women with locally advanced cervical cancer. Secondary endpoints include objective response rate (ORR), progression free survival (PFS), disease free survival, and immune correlates of response. Three patients experience grade 3 dose-limiting toxicities. The pre-specified endpoints are met, and overall response rate is 93.8% [95%CI: 69.8-99.8%] with a 2-year PFS of 75% [95% CI: 56.5-99.5%]. Compared to patients with progressive disease (PD), progression-free (PF) subjects show a brisker stromal immune infiltrate, higher proximity of tumor-infiltrating CD3+ T cells to PD-L1+ tumor cells and of FOXP3+ T cells to proliferating CD11c+ myeloid cells. PF show higher baseline levels of PD-1 and ICOS-L on tumor-infiltrating EMRA CD4+ T cells and tumor-associated macrophages, respectively; PD instead, display enhanced PD-L1 expression on TAMs, higher peripheral frequencies of proliferating Tregs at baseline and higher PD-1 levels at week 6 post-treatment initiation on CD4 and CD8 T cell subsets. Concomitant nivolumab plus definitive CRT is safe and associated with encouraging PFS rates. Further validation in the subset of locally advanced cervical cancer displaying pre-existing, adaptive immune activation is warranted.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Humanos , Feminino , Nivolumabe/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Quimiorradioterapia , Neoplasias Pulmonares/tratamento farmacológico
4.
NAR Genom Bioinform ; 2(1): lqz015, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575566

RESUMO

The error rates of third-generation sequencing data have been capped >5%, mainly containing insertions and deletions. Thereby, an increasing number of diverse long reads correction methods have been proposed. The quality of the correction has huge impacts on downstream processes. Therefore, developing methods allowing to evaluate error correction tools with precise and reliable statistics is a crucial need. These evaluation methods rely on costly alignments to evaluate the quality of the corrected reads. Thus, key features must allow the fast comparison of different tools, and scale to the increasing length of the long reads. Our tool, ELECTOR, evaluates long reads correction and is directly compatible with a wide range of error correction tools. As it is based on multiple sequence alignment, we introduce a new algorithmic strategy for alignment segmentation, which enables us to scale to large instances using reasonable resources. To our knowledge, we provide the unique method that allows producing reproducible correction benchmarks on the latest ultra-long reads (>100 k bases). It is also faster than the current state-of-the-art on other datasets and provides a wider set of metrics to assess the read quality improvement after correction. ELECTOR is available on GitHub (https://github.com/kamimrcht/ELECTOR) and Bioconda.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa